
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

A SPECIFICATION FOR ELECTRONIC DEVICE

COMMUNICATION IN MARINE ENVIRONMENTS

A thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in

Computer Science

by

Anthony J Arnold

May 2011

The thesis of Anthony J Arnold is approved:

John Noga, Ph.D Date

Robert McIlhenny, Ph.D Date

Jeff Wiegley, Ph.D, Chair Date

California State University, Northridge

ii

Dedication

This thesis is dedicated to my amazing wife and my awe-inspiring son. Without their
understanding and total support I would not have been able to complete this thesis work.
They made all of the tireless nights and busy weekends worth the sacrifice.

iii

Table of Contents

Signature page ii

Dedication iii

List of Tables vi

List of Figures vii

List of Listings viii

Abstract ix

1 Introduction 1
1.1 Background . 2

2 Devices 4

3 OpenMECS Protocol 6
3.1 Physical bus . 6

3.1.1 Topology . 6
3.1.2 Bandwidth . 8

3.2 Transport Layer . 8
3.3 Addressing . 9
3.4 Application Layer . 10

3.4.1 Communication Sequencing . 10
3.4.2 Application Layer Data Format 11
3.4.3 Field definitions . 13

3.5 Data Sets . 15
3.5.1 Utility . 15
3.5.2 Navigation . 20
3.5.3 Weather . 28
3.5.4 Mechanical . 36
3.5.5 Undefined Data Sets . 42

4 Project Demonstration 43
4.1 PIC32 Source Code Project . 43

iv

4.2 Fuel Level Sensor . 46
4.3 Anemometer . 47
4.4 Master node . 48

5 Conclusion 56
5.1 Future Research . 56

5.1.1 Peer to Peer Communication . 56
5.1.2 Security . 57

References 58

A Acronyms and Definitions 59

B Source Code 60

v

List of Tables

3.1 Available Data Sets . 15

A.1 Acronyms and Definitions . 59

vi

List of Figures

3.1 TCP/IP Model . 7
3.2 “Star” Topology . 8
3.3 Automatic Mode Communication Sequence 11
3.4 Initiated Mode Communication Sequence 12

4.1 Demonstration Setup . 44
4.2 Project Demonstration Schematic . 49
4.3 Fuel Level Sensor . 50
4.4 Anemometer - Front view . 51
4.5 Anemometer - Back view . 52
4.6 Data Display . 53
4.7 Connected Devices . 54
4.8 Master Setup . 55

vii

List of Listings

omecs message.c . 63
omecs.h . 69
omecs client.c . 72
main.c . 81

viii

ABSTRACT

A SPECIFICATION FOR ELECTRONIC DEVICE COMMUNICATION IN MARINE

ENVIRONMENTS

By

Anthony J Arnold

Master of Science in

Computer Science

The aim of this thesis project, “OpenMECS” (Open Marine Electronics Communication
Standard), is to produce a specification defining the protocol governing communication
between electronic devices in marine environments and to produce a prototype system to
prove the efficacy of the protocol specification. The specification will define data formats
and communication sequencing for exchanging data between marine electronic devices.
The prototype system will prove the viability of the message formats and communication
sequences with two example marine electronic devices communicating with a data display
using the OpenMECS standard.

ix

Chapter 1
Introduction

The objective of OpenMECS is to provide a free and easy to use protocol for sharing
data between electronic devices in marine environments. The idea is that device and boat
manufacturers, as well as hobbyists, can use and modify part or all of OpenMECS as an
integral component of their systems.

One of the main goals of OpenMECS is to provide a low cost, yet high performance
and complete alternative to NMEA-0183 [1] and NMEA-2000 [2]. To support this goal
OpenMECS itself will be free. The OpenMECS specification is licensed as follows: Any-
one may use or modify the contents of this specification at their will. The reference code
implementation will be licensed under the BSD license.

OpenMECS will also support low cost development by being based as much as pos-
sible on already existing open standards and technologies. I have chosen Ethernet and
TCP/IP to serve as the backbone of OpenMECS. Both are freely available standards that
have existed for a long time. Inexpensive development is easy to achieve with Ethernet and
TCP/IP. I also plan to utilize higher level protocols, such as DHCP, to achieve the goals of
OpenMECS.

At the end of my thesis I want to achieve a complete specification that anyone can
utilize without modification. I also want to demonstrate the viability of OpenMECS by
implementing a prototype system using the OpenMECS protocol. I plan to develop the
software for the prototype system with the goal of releasing it as a free and public Open-
MECS library.

The primary focus of this thesis is to define messaging formats and protocols which
will allow for easy and timely production of electronic devices which can communicate
with each other in marine environments, primarily watercraft such as boats. These formats
and protocols will be defined in a formal and complete manner which will allow producers
of commercial quality marine electronics to focus on device quality and features without
having to worry about interoperability with other manufacturers. This will provide a level
playing field on which any company can compete. Because the specification will be open
and based on Ethernet, development equipment is inexpensive and easy to obtain.

Hobbyists are an additional audience of OpenMECS. OpenMECS will allow any person
who has interest in developing their own devices the means to do so with the knowledge that
what they create will work with the other devices in their possession. The specification will
be simple and understandable enough that the average hobbyist with basic programming
and electronic skills will have a fast learning curve to implement the protocol.

1

1.1 Background

There are two well-known standards for marine environment electronics communication.
The proprietary standards NMEA-0183 [1] and NMEA-2000 [2] define communication
formats, protocols, and electrical specifications for electronic devices in marine environ-
ments. These standards are published by NMEA, the National Marine Electronics Associ-
ation. At the time of this writing the cost for complete documentation of NMEA-0183 is
$340, and complete documentation for NMEA-2000 is $4999. Because the price of these
standards is prohibitive, very few specific or technical references to these standards will
be included in my thesis. There are sources online which claim to provide some amount
of reverse engineering of the NMEA standards. When needed these sources will be listed.
They will be used sparingly as for the most part they are the work of hobbyists and not peer
reviewed. NMEA-0183 is severely out-of-date and provides limited bandwidth and wiring
options for deployment. NMEA-0183 is based on RS-422 with a very low baud rate of
4800 [3]. One good aspect of NMEA-0183 is that it uses the well known 8-bit serial stan-
dard, which is easy to develop for. Development hardware is inexpensive as any modern
personal computer has the necessary hardware. RS-422 serial is also simple to work with,
so software development costs are minimal.

NMEA-2000 is based on CAN [4] and provides for data speeds of up to 250kbit/sec.
This speed is roughly 52 times the speed available with NMEA-0183. Although NMEA-
2000 provides for higher bandwidth than NMEA-0183 it does not approach the 100Mbit/s
or 1000Mbit/s available bandwidths for Ethernet. One major drawback of NMEA-2000 is
the very high development costs associated with the CAN bus. Not only does the NMEA-
2000 standard cost thousands of dollars, but so do hardware and software development
tools. Hardware for a single commercial development station allowing communication on
one CAN bus can cost well into the $20,000 range. The structure of CAN data is also
limited. With NMEA-0183 the data can be arbitrary in length. A single CAN message is
limited to a maximum of 8 bytes of data.

I will show that although Ethernet based communication is more complicated than RS-
422 or CAN, it will still be easy to implement as evidenced by my prototype system. Ether-
net is also very common, and hardware and software development tools are available very
inexpensively or free. Most PCs sold today have Ethernet jacks that support 10/100/1000
Mbit/s speeds. There are a myriad of free bus monitoring tools for Ethernet based net-
works. One such tool that I employed during the development of my prototype systems is
Wireshark [10].

One aspect of marine communication that will not be addressed in this thesis is the
electrical specifications of Ethernet. Typically there are special grounding and other various

2

electrical requirements that are considered for electronics in potentially wet environments.
This thesis will leave these details to be defined at a later date.

3

Chapter 2
Devices

The first step was to identify the types of devices which are intended to be supported by
OpenMECS. Although they do vary, they all share the common purpose of being used in
a marine environment. OpenMECS was not designed to support entertainment devices (at
least not this version). It is possible that support for entertainment types of devices will be
added to OpenMECS as a follow up effort to the thesis.

The first task was to list as many marine electronic devices as I could think of and
then to group them logically by function. The following list is not exhaustive of all marine
devices.

• GPS receiver

• Compass

• Anemometer

• Knotmeter

• Thermometer

• Wind Vane

• Sonar

• Camera

• Engine Monitor

• Radar

• Barometer

• Humidity Meter

• Powerplant

I immediately discarded the extremely high bandwidth devices such as camera, sonar
and radar. They were also excluded from being considered as I have no domain knowledge
of their data interchange formats and protocols.

4

Next I researched the NMEA-0183 and NMEA-2000 protocols to figure out which
kinds of devices they supported. I was unable to find any information about the sup-
ported devices of NMEA-2000. I decided to assume NMEA-2000 would at least support a
super-set of the devices supported by NMEA-0183. In summary, most of the information
available for NMEA-0183 points only towards its support of Navigational devices, GPS in
particular. Glenn Baddeley’s website [7] was particularly useful. It lists a cornucopia of
different types of data that GPS devices can transmit. The vast majority of the information
was well beyond my comprehension of navigation domain. I decided to support only a few
basic types of information formats based on GPS navigation: Latitude/Longitude, Bearing,
Altitude and Velocity.

This website [6] also added some useful data formats such as Rudder Angle and Rate of
Turn. Neither website is official or credentialed so I used their data only as informational
and not as authoritative resources.

5

Chapter 3
OpenMECS Protocol

This document identifies OpenMECS protocol version 1. Defining a version of the protocol
allows forward compatibility with future versions of the protocol. The protocol is self iden-
tifying as shown in section 3.4.2. Being self identifying allows the nodes on the network
to know which version of the protocol they are receiving. Nodes that implement future
versions of the protocol can also implement older versions to allow nodes constructed to
use an older version of the protocol to be used as long as possible.

The standard TCP/IP network model has four layers: The Link layer, the Internet layer,
the Transport layer, and the Application layer. The Link layer is standard Ethernet protocol
with no modifications. Most modern operating systems include support for Ethernet na-
tively. Libraries for embedding Ethernet communication into small devices are also avail-
able freely. The MPLab Suite that came with the PIC32 Starter Kits came bundled with
a complete TCP/IP stack which included Ethernet. The Internet layer will be standard IP
version 4 with no modifications. IP Addressing is covered in section 3.3. The Transport
layer can either be UDP or TCP. The Transport layer is covered in section 3.2. The Open-
MECS protocol itself entirely defines the Application Layer, as shown in figure 3.1

3.1 Physical bus

To increase openness and portability of nodes between applications, the OpenMECS stan-
dard assumes a default physical layer of Copper Category X cable. This also assumes that
each node will connect to the cable by using an RJ-45 jack. Users of the OpenMECS pro-
tocol are free to implement any physical layer they please, however, interoperability will
be harder to ensure between nodes and applications.

3.1.1 Topology

One of the drawbacks of both NMEA-0183 and NMEA-2000 is topology. Topology is
the physical layout of the network that connects the devices which speak each of those
protocols. NMEA-0183 is a simple point-to-point bus. Each device can only talk with one
other device. This means that a Master node that speaks NMEA-0183 must have a physical
connection for every device it gets data from. This increases the complexity of the master
device. It also increases the amount of wiring to connect multiple NMEA-0183 devices
together.

6

Figure 3.1: TCP/IP Model

NMEA-2000 is a networked bus. All devices on the network share the exact same
two wires. This allows the wiring to be somewhat simpler than a NMEA-0183 “network.”
Although each device shares the same two wires, the NMEA-2000 standard allows for
stubs that splice into the main set of wires. The stubs are limited in length, reducing their
effectiveness for large physical networks.

The OpenMECS protocol network, like all application layers that depend on TCP/IP,
will have a ”star” topology. This means that every node on the network will have a wired
connection to a centralized point. There are numerous variations on what the centralized
point may be. The centralized point may be the Master node of the network. This will
probably not be the case as it would mean that the Master node would need to have many
cable jacks. The most likely scenario would be for the central point in the network to be a
hub or switch. With this configuration each node would have a cable running from itself to
the switch. This would include the Master node. It is also possible with the ”star” topology
to have multiple switches connected to each other. This would reduce the number of cables
required to connect separate parts of the ship that are far from each other. Care must be
taken with this approach as every switch added between an End node and the Master node

7

adds latency to the communication between the nodes. This may be an important factor
depending on the data being transmitted. Figure 3.2 depicts an example of the topology of
an OpenMECS network deployed on a ship:

Figure 3.2: “Star” Topology

3.1.2 Bandwidth

Assuming Copper Category X cable or higher from section 3.1 is used to connect the Open-
MECS network, the minimum supported speed for an OpenMECS network is 10Mb/S.
Manufacturers of OpenMECS compliant devices should strive for backwards compatibility
down to this speed. It is recommended that device manufactures support a maximum band-
width of at least 1000Mb/S (1000BASE-T). Each application of an OpenMECS network
will need a bandwidth analysis performed to ensure that the capacity of the OpenMECS
network is not exceeded. In general, a spare bandwidth capacity of 30% is recommended
for all applications. Thirty percent spare is taken from my experience in the Commercial
Aerospace industry.

3.2 Transport Layer

The OpenMECS messages define the Application Layer of the TCP/IP model. Either UDP
or TCP can be used as the Transport Layer protocol. The following details are defined for
the use of UDP:

8

• Port: 57460 for initiated mode communication

• Port: 57461 for automatic mode

• Port: 57465 for broadcast data

The following details are defined for the OpenMECS use of TCP:

• Port: 57462 for all modes

• Push Flag: Always set to 1 (ensures timely transmission of TCP packets)

3.3 Addressing

This version of OpenMECS is designed for IP version 4. Future versions may support
IP version 6. Each node on an OpenMECS network needs an IPv4 address. DHCP is
used as the address assignment protocol. The following DHCP details are defined for the
OpenMECS use of DHCP:

• This version of the protocol requires that all OpenMECS nodes must support DHCP,
and receive their IP address through DHCP

• All OpenMECS End nodes must support the following standard DHCP Options:

– 1: Subnet Mask

– 53 : DHCP Message Type

– 51: IP Address Lease Time (End nodes may assume a minimum of 1 hour)

• Although the DHCP server may offer additional options than those listed above, no
OpenMECS node will rely on any option not listed.

• The DHCP server does not need to be the Master node.

The End nodes will decode the “Gateway” data field within the DHCP Acknowledge-
ment message. They will assume that the Gateway address is either the Master node, or
can forward their data to the Master node.

9

3.4 Application Layer

3.4.1 Communication Sequencing

Once any End node starts up it will immediately start the DHCP process to receive its
IP address. Once an End node has its IP address the first message it transmits will be the
Device Identification message to the Master node. This effectively “registers” the End node
with the Master node. This has two uses. It allows the Master node to request data from
the End node if it did not know it would be on the network. It also allows the Master node
to check a preconfigured data table of expected End nodes to ensure the health of the entire
system. Once the initial Device Identification message has been transmitted the End node
is free to send and receive messages in either initiated or automatic mode. The exception
being the Device Identification message. Each End node must resend this message to the
Master node at least once every ten seconds. This provides a “heartbeat” signal that allows
the Master node to check on network health. It also allows the network to recover gracefully
from power interruptions.

There are two modes of communication, initiated and automatic. For most data the
intended communication mode is automatic. In this mode the End nodes will start trans-
mitting their Data Sets automatically to the Master node as soon as they are ready. It is
up to the manufacturer of the End node to pick an appropriate transmission rate. This
mode allows for less overhead on the network because it cuts out a request message for
every message containing data. This reduction in overhead will be important for data that
is going to be transmitted very frequently. Although this mode allows for more efficient
use of the bus, care must be taken to ensure that the available bandwidth of the bus is not
exceeded. Whomever is selecting nodes for installation in an OpenMECS network should
perform an analysis of bus bandwidth based on the stated data rates of the node manufac-
turers. Figure 3.3 depicts an example automatic mode communication sequence. In the
sequence shown the End node receives its IP address using DHCP. Then it transmits the
Device Identification message to the Master node as its first message. After the Device
Identification message, the End node transmits the Bearing message to the Master node at
a rate of .5 seconds, repeating the Device Identification every 10 seconds or less.

Initiated mode works in a traditional command-response format. The master node may
request data from any of the End nodes. When an End node receives a request from the
master node, the dataRequest flag will be set to true in the OpenMECS message. The mes-
sage will also contain the list of Data Sets the Master node is requesting from the End node.
The End node may transmit a response with any number of the requested Data Sets back
to the Master node. The response from the End node will set the dataRequest flag to false.

10

Figure 3.3: Automatic Mode Communication Sequence

This mode of communication is mostly useful for data that is not needed continuously or
that is very infrequently needed. Figure 3.4 depicts an example initiated mode communica-
tion sequence. The End node in this example transmits the Air Temperature message upon
request from the Master node. The Master node is requesting the Air Temperature from the
End node every 5 seconds.

3.4.2 Application Layer Data Format

JSON (JavaScript Object Notation) is used as the underlying generic data exchange format
for OpenMECS messages. JSON is a textual data format that allows for numerical and
textual data to be represented in a structured and hierarchical format. The structure and
hierarchy for the OpenMECS usage of JSON is defined in the following sections. Each

11

Figure 3.4: Initiated Mode Communication Sequence

message will have the following general format at the top most level:
{
“content”:”OpenMECS”,
“protocolVersion”:P,
“dataRequest”:true—false,
“dataSets”:
[Data Set 1, Data Set 2, Data Set N],
“numDataSets”:N,
“validity”: V
}
Whitespace characters (space, tab, carriage return, line feed, etc) have no meaning and

12

will always be ignored. However they will be used during the calculation of the validity
value of the message. The order of the key:value pairs within the JSON object does not
matter.

The following example, less the quotes, depicts a complete OpenMECS message string
as it might be transmitted on the network. This sample is for version 1 of the protocol,
and consists of two Data Sets, namely Bearing and Altitude. The Validity value is shown
as a variable as it was not calculated for this example. As stated above the whitespace is
ignored. Any whitespace shown in the example below is for readability only.

‘‘{content:OpenMECS,

protocolVersion:1,

dataRequest:false,

dataSets:

[{dataType:12,dataContents:

[23:15:40:123,12.34,A,13.45,1.11,E,A]},

{dataType:11,dataContents:

[23:15:40:189,234,171,F,E]}],

numDataSets:2,

validity:VVVVVVVV}’’

3.4.3 Field definitions

3.4.3.1 “content”:”OpenMECS”

This field defines the message as belonging to the OpenMECS protocol. It is the first field
that will be checked for message validity in nodes adhering to the OpenMECS protocol.

3.4.3.2 “protocolVersion”:P

This field identifies which version of the protocol the particular instance of an OpenMECS
message was designed for. This allows nodes using OpenMECS to ensure that correct data
format and syntax is used. Evolution of the protocol will mean that the version number
will be incremented. Nodes using OpenMECS may support multiple protocol versions to
enhance compatibility. P is a string that represents the version of the protocol.

3.4.3.3 “dataRequest”:true—false

This field denotes whether the OpenMECS transmission is a request for data, or contains
data. The Master node within an OpenMECS network will transmit messages with this

13

field set to true. The End nodes on the network will transmit messages with this field set to
false.

3.4.3.4 “dataSets”:[Data Set 1, Data Set 2, Data Set N]

This field contains the functional data (or requests) used by the Master node. This field can
consist of more than one piece of data. Each piece of data is referred to as a Data Set. Each
Data Set will have the following format at its top most level:

{
“dataType”: DT,
“dataContents”:[Data Content]
}

3.4.3.4.1 Data Set field definitions

3.4.3.4.1.1 “dataType”: DT

This field indicates the type of data within the Data Set. Each Data Set contains only one
type and one instance of data. For example a Data Set may contain one Latitude/Longitude
only. It would not also contain a heading or a second Latitude/Longitude. DT is defined
below for each Data Set.

3.4.3.4.1.2 dataContents: [Data Content]

If “dataRequest” is set to true, this array will be null. If “dataRequest” is false, this field
will contain the actual data from the End node. The detailed definitions of the dataContents
field for each Data Set is defined in section 3.5

3.4.3.5 “numDataSets”:N

This field indicates the number of Data Sets that are included in the OpenMECS message.
Used by the node to ensure all data was received. If not all Data Sets were received, the
entire message will be ignored by the node.

N is an integer.

3.4.3.6 “validity”: V

This field contains the validity check value for the message. The validity check value is an
IEEE 802.3e 32-bit CRC calculated over the entire message text, excluding the following:

14

Data Type Definitions
Category Data Type(DT) Definition

Utility
1 Device Identification
2 System Time

Navigation

10 Latitude/Longitude
11 Altitude
12 Bearing
13 Velocity
14 Rate of Turn

Weather

30 Air Temperature
31 Water Temperature
32 Wind Speed
33 Wind Angle

Mechanical

50 Fuel Level
51 Battery Level
52 Engine Revolutions
53 Rudder Angle
54 Power Plant Operational Status

Reserved

0
3 - 9

15 - 29
34 - 49

Table 3.1: Available Data Sets

• The opening brace

• The “,” character at the end of numDataSets

• The “validity”: V field

• The closing brace

3.5 Data Sets

Each Data Set defines one atomic piece of data. Each Data Set has a uniquely identifying
attribute called “Data Type.” The Data Type will be used by the Master node to decode the
received Data Sets. Table 3.1 summarizes the Data Sets that have been defined.

3.5.1 Utility

3.5.1.1 Device Identification

This Data Set is not optional. All OpenMECS compliant nodes must support this message.

15

3.5.1.1.1 Data Type

DT = “1”

3.5.1.1.2 Data Contents Format

[
IPAddress ,
MACAddress ,
Make,
Model,
SerialNum,
PartNum,
NumDeviceCapabilities,
[
DataType1,
,
DataTypeN
]
]

3.5.1.1.3 Field definitions

3.5.1.1.3.1 IPAddress

The IP version 4 address of the node transmitting this message. String in a dotted decimal
formation. Example: “192.69.0.65”.

3.5.1.1.3.2 MACAddress

The MAC address of the node transmitting this message. String in a colon separated hex
formation. Example: “6C:F0:48:01:B3:82”.

3.5.1.1.3.3 Make

The Make of the node transmitting this message. String of maximum length of 255 char-
acters.

16

3.5.1.1.3.4 Model

The Model of the node transmitting this message. String of maximum length of 255 char-
acters.

3.5.1.1.3.5 SerialNum

The Serial number of the node transmitting this message. String of maximum length of 255
characters.

3.5.1.1.3.6 PartNum

The Part number of the node transmitting this message. String of maximum length of 255
characters.

3.5.1.1.3.7 NumDeviceCapabilities

The number of distinct Data Set Data Types that this node is capable of providing. Must
match the number of items in the array which follows this field.

3.5.1.1.3.8 [DataType1, , DataTypeN]

This is an array of Data Types that this node is capable of providing. For a device supporting
the Data Set Types of Bearing(12) and Velocity(13) this field would be: [12,13].

17

3.5.1.2 System Time

All OpenMECS compliant nodes that report any Data Sets with a time stamp must support
reception of this message. This message is intended to be transmitted by the Master node.
The End nodes should receive this message and synchronize their internal clocks accord-
ingly. This message was chosen to be part of the protocol instead of relying on a service
such as NTP, because this message is simple. There should be little network overhead for
this message. It requires that the Master node have a built-in, accurate time mechanism, or
receive its time from a GPS node.

3.5.1.2.1 Data Type

DT = “2”

3.5.1.2.2 Data Contents Format

[
Date,
Time,
“A” | “N” | “S”
]

3.5.1.2.3 Field definitions

3.5.1.2.3.1 Date

This field indicates the current date. It has the following string format:
“YYYY-MM-DD”
Where:
YYYY = years
MM = months
DD = days

3.5.1.2.3.2 Time

This field indicates the current time. It has the following string format:
“HH:MM:SS:NNN”
Where:
HH = Hours

18

MM = minutes
SS = seconds
NNN = milliseconds

3.5.1.2.3.3 “A” | “N” | “S”

This field indicates the quality of the Time measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

19

3.5.2 Navigation

All of the Data Sets below are optional. Each node manufacturer is free to implement as
few or as many Data Set capabilities as they please.

3.5.2.1 Latitude/Longitude

3.5.2.1.1 Data Type

DT = “10”

3.5.2.1.2 Data Contents Format

[
Time,
Latitude,
“N”| “S”,
Longitude,
“E” | “W”,
“A” | “D” | “E” | “N” | “S”
]

3.5.2.1.3 Field definitions

3.5.2.1.3.1 Time

This field indicates what time the Latitude and Longitude measurements were taken. This
data enables the Master node to ensure that the End node is operating on current data. This
field has the following string format: “23:15:40:123”. This example equates to 23 hours,
15 minutes, 40 seconds, and 123 milliseconds UTC.

3.5.2.1.3.2 Latitude

This field contains the Latitude of the End node. It has the following string format:
“1212.123”. This example equates to 12 degrees 34.123 minutes.

3.5.2.1.3.3 “N” | “S”

This field denotes whether the Latitude is North “N” or South “S” of the equator.

20

3.5.2.1.3.4 Longitude

This field contains the Longitude of the End node. It has the following string format:
“12012.123”. This example equates to 12 degrees 12.123 minutes.

3.5.2.1.3.5 “E” | “W”

This field denotes whether the Longitude is East “E” or West “W” of the Prime Meridian
(0 degrees).

3.5.2.1.3.6 “A” | “D” | “E” | “N” | “S”

This field indicates the quality of the Latitude and Longitude measurements.
“A” = Autonomous
“D” = Differential
“E” = Estimated (Dead Reckoning)
“N” = Not Valid
“S” = Simulated
Only a quality of “A” or “D” should be trusted for normal operation.

21

3.5.2.2 Altitude

3.5.2.2.1 Data Type

DT = “11”

3.5.2.2.2 Data Contents Format

[
Time,
Altitude,
HeightOfGeoid,
“M” | “F”,
“A” | “E” | “N” | “S”
]

3.5.2.2.3 Field definitions

3.5.2.2.3.1 Time

This field indicates what time the Altitude measurement was taken. This data enables the
Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.2.2.3.2 Altitude

This field contains the Altitude of the End node. It has the following numerical format:
01234.12. This example equates to 1,234.12 units.

3.5.2.2.3.3 HeightOfGeoid

This field contains the height of the Geoid (mean sea level) above WGS84 ellipsoid. It has
the following numerical format: 01234.12.

3.5.2.2.3.4 “M” | “F”

This field indicates the units used to measure altitude.
“M” = Meters
“F” = Feet

22

3.5.2.2.3.5 “A” | “E” | “N” | “S”

This field indicates the quality of the Altitude measurement.
“A” = Active
“E” = Estimated (Dead Reckoning)
“N” = Not Valid
“S” = Simulated
Only a quality of “A” or “E” should be trusted for normal operation.

23

3.5.2.3 Bearing

3.5.2.3.1 Data Type

DT = “12”

3.5.2.3.2 Data Contents Format

[
Time,
BearingTrue,
“A” | “N” | “S”,
BearingMagnetic,
MagneticVariation,
“E” | “W”,
“A” | “N” | “S”
]

3.5.2.3.3 Field definitions

3.5.2.3.3.1 Time

This field indicates what time the Heading measurement was taken. This data enables the
Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.2.3.3.2 BearingTrue

This field contains the True Bearing of the End node in degrees. It has the following
numerical format: 012.34.

3.5.2.3.3.3 “A” | “N” | “S”

The first A|N|S field indicates the quality of the True Bearing measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

24

3.5.2.3.3.4 BearingMagnetic

This field contains the Magnetic Bearing of the End node in degrees. It has the following
numerical format: 123.45.

3.5.2.3.3.5 MagneticVariation

This field (also known as declination) contains the Magnetic Variation of the End node in
degrees. It is the difference between Magnetic and True bearing for the current position of
the End node. It has the following numerical format: 123.45.

3.5.2.3.3.6 “E” | “W”

This field indicates the direction of Magnetic Variation of the End node in degrees.
“E” = East
“W” = West

3.5.2.3.3.7 “A” | “N” | “S”

The second A|N|S field indicates the quality of the Magnetic Bearing measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

25

3.5.2.4 Velocity

3.5.2.4.1 Data Type

DT = “13”

3.5.2.4.2 Data Contents Format

[
Time,
Velocity,
A | E | N | S,
]

3.5.2.4.3 Field definitions

3.5.2.4.3.1 Time

This field indicates what time the Velocity measurement was taken. This data enables the
Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.2.4.3.2 Velocity

This field contains the Velocity of the End node in knots. It has the following numerical
format: 012.34.

3.5.2.4.3.3 “A” | “E” | “N” | “S”

This field indicates the quality of the Velocity measurement.
“A” = Active
“E” = Estimated (Dead Reckoning)
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

26

3.5.2.5 Rate of Turn

3.5.2.5.1 Data Type

DT = “14”

3.5.2.5.2 Data Contents Format

[
RateOfTurn,
A | N | S,
]

3.5.2.5.3 Field definitions

3.5.2.5.3.1 RateOfTurn

This field indicates at what rate the vessel is turning. It is measured in degrees per minute.
This field is a number. If positive it indicates a turn towards starboard (right), negative
indicating a turn towards port (left).

3.5.2.5.3.2 “A” | “E” | “N” | “S”

This field indicates the quality of the Velocity measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

27

3.5.3 Weather

3.5.3.1 Air Temperature

3.5.3.1.1 Data Type

DT = “30”

3.5.3.1.2 Data Contents Format

[Time,
Temperature,
“C” | “F”,
“A” | “N” | “S”
]

3.5.3.1.3 Field definitions

3.5.3.1.3.1 Time

This field indicates what time the Air Temperature measurement was taken. This data
enables the Master node to ensure that the End node is operating on current data. This field
has the following string format: “23:15:40:123”. This example equates to 23 hours, 15
minutes, 40 seconds, and 123 milliseconds UTC.

3.5.3.1.3.2 Temperature

This field contains the Temperature of the End node in degrees. It has the following nu-
merical format: 012.34.

3.5.3.1.3.3 “C” | “F”

This field indicates the measurement units for Temperature.
“C” = Celsius
“F” = Fahrenheit

3.5.3.1.3.4 “A” | “N” | “S”

This field indicates the quality of the Air Temperature measurement.
“A” = Active
“N” = Not Valid

28

“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

29

3.5.3.2 Water Temperature

3.5.3.2.1 Data Type

DT = “31”

3.5.3.2.2 Data Contents Format

[
Time,
Temperature,
“C” | “F”,
“A” | “N” | “S”
]

3.5.3.2.3 Field definitions

3.5.3.2.3.1 Time

This field indicates what time the Temperature measurement was taken. This data enables
the Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.3.2.3.2 Temperature

This field contains the Temperature of the End node in degrees. It has the following nu-
merical format: 012.34.

3.5.3.2.3.3 “C” | “F”

This field indicates the measurement units for Temperature.
“C” = Celsius
“F” = Fahrenheit

3.5.3.2.3.4 “A” | “N” | “S”

This field indicates the quality of the Water Temperature measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated

30

Only a quality of “A” should be trusted for normal operation.

31

3.5.3.3 Wind Speed

3.5.3.3.1 Data Type

DT = “32”

3.5.3.3.2 Data Contents Format

[
Time,
WindSpeed,
“K” | “N” | “M”,
“A” | “N” | “S”
]

3.5.3.3.3 Field definitions

3.5.3.3.3.1 Time

This field indicates what time the Wind Speed measurement was taken. This data enables
the Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.3.3.3.2 WindSpeed

This field indicates the speed of the Wind. It has the following numerical format: 012.34.

3.5.3.3.3.3 “K” | “N” | “M”

This field indicates the measurement units for Wind Speed.
“K” = Knots per hour
“N” = Nautical miles per hour
“M” = Kilometers per hour

3.5.3.3.3.4 “A” | “N” | “S”

This field indicates the quality of the Wind Speed measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated

32

Only a quality of “A” should be trusted for normal operation.

33

3.5.3.4 Wind Angle

3.5.3.4.1 Data Type

DT = “33”

3.5.3.4.2 Data Contents Format

[
Time,
WindAngle,
“R” | “T”,
“A” | “N” | “S”
]

3.5.3.4.3 Field definitions

3.5.3.4.3.1 Time

This field indicates what time the Heading measurement was taken. This data enables the
Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.3.4.3.2 WindAngle

This field indicates the angle of the Wind in degrees. It has the following numerical format:
012.34.

3.5.3.4.3.3 “R” | “T”

This field indicates the measurement reference for Wind Angle.
“R” = Relative
“T” = True

3.5.3.4.3.4 “A” | “N” | “S”

This field indicates the quality of the Wind Angle measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated

34

Only a quality of “A” should be trusted for normal operation.

35

3.5.4 Mechanical

3.5.4.1 Fuel Level

3.5.4.1.1 Data Type

DT = “50”

3.5.4.1.2 Data Contents Format

[
Time,
FuelLevel,
“A” | “N” | “S”
]

3.5.4.1.3 Field definitions

3.5.4.1.3.1 Time

This field indicates what time the Fuel Level measurement was taken. This data enables
the Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.4.1.3.2 FuelLevel

This field indicates the percentage of fuel remaining. It has the following numerical format:
100.00. It has a range of 0.00 to 100.00

3.5.4.1.3.3 “A” | “N” | “S”

This field indicates the quality of the Fuel Level measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

36

3.5.4.2 Battery Level

3.5.4.2.1 Data Type

DT = “51”

3.5.4.2.2 Data Contents Format

[
Time,
BatteryLevel,
“A” | “N” | “S”
]

3.5.4.2.3 Field definitions

3.5.4.2.3.1 Time

This field indicates what time the Battery Level measurement was taken. This data enables
the Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.4.2.3.2 BatteryLevel

This field indicates the percentage of battery remaining. It has the following numerical
format: 100.00. It has a range of 0.00 to 100.00

3.5.4.2.3.3 “A” | “N” | “S”

This field indicates the quality of the Battery Level measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

37

3.5.4.3 Engine Revolutions

3.5.4.3.1 Data Type

DT = “52”

3.5.4.3.2 Data Contents Format

[
Time,
EngineRevs,
“EngineID”,
“A” | “N” | “S”
]

3.5.4.3.3 Field definitions

3.5.4.3.3.1 Time

This field indicates what time the Engine Revolutions measurement was taken. This data
enables the Master node to ensure that the End node is operating on current data. This field
has the following string format: “23:15:40:123”. This example equates to 23 hours, 15
minutes, 40 seconds, and 123 milliseconds UTC.

3.5.4.3.3.2 EngineRevs

This field indicates the number of revolutions at which the engine is rotating. It has the
following numerical format: 01234.

3.5.4.3.3.3 “EngineID”

This field identifies the engine to which this message applies. It is a string of up to 64
characters.

3.5.4.3.3.4 “A” | “N” | “S”

This field indicates the quality of the Engine Revolutions measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

38

3.5.4.4 Rudder Angle

3.5.4.4.1 Data Type

DT = “53”

3.5.4.4.2 Data Contents Format

[
Time,
RudderAngle,
“A” | “N” | “S”
]

3.5.4.4.3 Field definitions

3.5.4.4.3.1 Time

This field indicates what time the Rudder Angle measurement was taken. This data enables
the Master node to ensure that the End node is operating on current data. This field has the
following string format: “23:15:40:123”. This example equates to 23 hours, 15 minutes,
40 seconds, and 123 milliseconds UTC.

3.5.4.4.3.2 RudderAngle

This field indicates the angle of the Rudder in degrees, in relation to the craft. It has the
following numerical format: 012.30. It has a range of 0.00 to 359.99

3.5.4.4.3.3 “A” | “N” | “S”

This field indicates the quality of the Rudder Angle measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

39

3.5.4.5 Power plant Operational Status

This message defines a very generic notion of a power plant. It is designed to be able to
identify any number of power plant types such as gasoline engines, diesel engines, electric
Azimuth thrusters. As well as locomotive power sources this message also supports power
plants that might be used purely to generate electricity or heat. Generality is achieved by
having the “PowerPlantID” field, which is a string. Each power plant manufacturer can
identify their product as they please.

3.5.4.5.1 Data Type

DT = “54”

3.5.4.5.2 Data Contents Format

[
Time,
“PowerPlantID”,
“R”| “N” | “I”,
“A” | “N” | “S”
]

3.5.4.5.3 Field definitions

3.5.4.5.3.1 Time

This field indicates what time the Power Plant Operational Status measurement was taken.
This data enables the Master node to ensure that the End node is operating on current data.
This field has the following string format: “23:15:40:123”. This example equates to 23
hours, 15 minutes, 40 seconds, and 123 milliseconds UTC.

3.5.4.5.3.2 “PowerPlantID”

This field identifies the power plant to which this message applies. It is a string of up to 64
characters.

3.5.4.5.3.3 “R” | “N” | “I”

This field indicates the operational status of the power plant.
“R” = Running

40

“N” = Not Running
“I” = Inoperable, indicates damage or maintenance
Only a quality of “A” should be trusted for normal operation.

3.5.4.5.3.4 “A” | “N” | “S”

This field indicates the quality of the Power Plant Operational Status measurement.
“A” = Active
“N” = Not Valid
“S” = Simulated
Only a quality of “A” should be trusted for normal operation.

41

3.5.5 Undefined Data Sets

The following Data Sets are listed here as potential Data Sets to implement in the future.
I do not have enough domain knowledge and/or could not find enough information on the
NMEA-0183 equivalent to provide a detailed definition of these Data Sets.

• Waypoint Alarm

• Position Accuracy

• GPS satellites in view

• Humidity

• Precipitation condition

• Precipitation chance

• Sunny/Cloudy

• Swell

42

Chapter 4
Project Demonstration

One of the main goals of this project is to show that the OpenMECS protocol is feasible. To
support this goal, two real-world demonstration examples were created. Both were created
using PIC32 Ethernet Starter Kits from Microchip®. The Starter Kits contained a PIC32
starter board which has a PIC32 microcontroller, on-board USB debugging, an RJ-45 jack,
and some switches and LED. The USB cable is used for debugging, Flash programming and
powering the PIC32 Starter kit. The kits also contain the free IDE MPLab, which includes
the compiler, debugger, and libraries for getting started writing code that takes advantage
of the included TCP/IP stack. The MPLab IDE supports the C programming language. The
Microchip® PIC32 I/O expansion board was added to the starter boards. The combination
of the PIC32 Ethernet starter board and expansion board allowed me to create OpenMECS
applications that read sensors and reported the data back to the Master node. The two
demonstration nodes and their applications are detailed below. I chose to implement a fuel
level sensor and an anemometer for the demonstration. The entire demonstration setup is
shown in Figure 4.1.

Refer to the schematic in Figure 4.1 while reading sections 4.2 and 4.3

4.1 PIC32 Source Code Project

I started with the Microchip® example project “Ethernet - TCPIP-BSD - HTTP Server
Demo” which ships with the installation CD that comes with the PIC32 Starter kit. This
example project contains source code which initializes the hardware including the PIC32
microcontroller and the Ethernet chip. It also initializes the TCP/IP stack. It uses a basic
system scheduler from the Microchip® “system services.c” API which has a configurable
“tick.” The tick is initialized based on a desired value and is achieved using an interrupt
available on the PIC32 microcontroller Each tick of the scheduler calls the TCP/IP stack
function. Each time the TCP/IP stack function is called data packets are either received or
transmitted from/to the TCP/IP packet buffers in RAM. The example project also contains
a “while” loop which executes forever as fast as possible. Essentially the system “tick” can
be thought of as the “foreground” task, while the “while” loop can be thought of as the
“background” task.

I developed one project that contained the source code for both the Fuel Level Sensor
and the Anemometer. My modifications to the existing example project were all performed
in the file “main.c.” Since my project did not require any HTTP functionality I removed the
calls to the HTTP Initialization and Application functions. The HTTP initialization func-

43

Figure 4.1: Demonstration Setup

tion was called just once in the beginning of function main(). The HTTP Application func-
tion was called once on every iteration of the “while” loop. I added code into the “while”
loop to check if the DHCP functionality had received an IP address from the DHCP server.
Once the IP address is received the OpenMECS initialization function OMECS ClientInit()
is called once from the “while” loop with values for the Server (DHCP Gateway) IP address
and the IP address received for the PIC32 board. After the initialization function has been
called the End node application function OMECS Client() is called once every iteration of
the “while” loop.

I defined a “#define” called WINDSPEED in the omecs client.c file. If WINDSPEED
has a value of “1” the code for the Anemometer is compiled into the executable and the
code for the Fuel Level sensor is not. If WINDSPEED has a value of “0” the reverse is true.
This allowed me to share much of the same code for the End node application between the

44

two different devices. The device specific implementations are detailed in sections 4.2 and
4.3 below.

For both the Fuel Level Sensor and the Anemometer the ADC on the PIC32 was used to
read in the analog value from the sensor or motor. Both devices use physical pin AN4 which
correspond to ADC channel 4. Channel 4 of the ADC is configured in OMECS ClientInit()
to automatically sample the value of the pin in the background. This means that the ap-
plication code does not have to request a conversion of the data. The conversion results
will be waiting for the application code. Channel 4 is also configured to reference exter-
nal 5Volt and Ground signals fed into the VREF and AVSS pins on the microcontroller.
Channel 4 is configured to perform two samples in a double buffered setup, which en-
sures no data overwriting when a conversion results is being read by the application code.
OMECS ClientInit() also calculates how many system ticks are in a one second period by
calling the API function provided by the Microchip® System Services API.

OMECS Client() is called by the “while” loop as fast as can be. This means the timing
for the End node application had to be derived in this function. OMECS Client() reads the
ticks per second variable that was setup by OMECS ClientInit() and packs and transmits
the “Device ID” message once every 10 seconds. The only difference is that the “dataSets“
field in the message is changed based on if the device is an Anemometer (WINDSPEED
== 1) or a Fuel Level Sensor (WINDSPEED == 0).

The other common functionality between the two devices is the reception and un-
packing of the “System Time” OpenMECS message from the Laptop PC. The function
OMECS Client() manually unpacks the OpenMECS data in the “SystemTime” message
into a global variable kept for the system time. This was done by manually unpacking the
data instead of using the OpenMECS library code to show the flexibility of using JSON as
the basic data layer. If a developer wished to perform basic string manipulation to pack and
unpack the OpenMECS data instead of using the OpenMECS library code there would be
no functional problem.

One area of difficulty that I ran into was RAM utilization. Numerous times during
development I would compile and execute the project with no bus output as expected. When
I tried to debug the problem the debugger would get “lost” and not know which line of C
code was executing. I had to resort to debugging the disassembled object code. I figured out
that the dynamic memory usage of calling malloc() was overwriting the stack area of RAM.
This was causing the code to get “lost” by performing jumps to random address locations
and confusing the debugger. The solution was to call the free() function every iteration of
OMECS Client() to free up RAM for other functionality when the OpenMECS messages
did not need to be packed and transmitted on an iteration. My original implementation

45

kept a copy of the OpenMECS message structure in RAM at all times and just updated
the data within that structure. By calling free() on the OpenMECS message structure, the
structure had to be rebuilt from scratch on every iteration in which it would be transmitted.
Another possible solution could have been to modify the CRC32 code. I chose a table based
CRC32 method. This method keeps a table in RAM that contains a 256 byte array of pre-
calculated CRC32 values for all possible bit combinations in a byte of data. This table is
generated during initialization when OMECS ClientInit() calls the function OMECS Init()
from the OpenMECS code library. I could have stored this table as a constant in Non-
volatile memory instead of generating the table into RAM. This would have freed up 256
bytes of RAM. However it would have also had the consequence of making the CRC32
algorithm slower as memory reads from Non-volatile memory are slower than reads from
RAM.

4.2 Fuel Level Sensor

I wanted to start with an easy real-world demonstration to which anyone could relate. I
picked a Fuel Level Sensor. The premise of this sample is to measure the level of fuel
available to the power plant. I have approximated a float-type liquid level sensor. The float
in my demonstration is replaced by a knob to allow a human to actuate the arm. The knob
is attached to an arm which rotates a potentiometer. The potentiometer essentially acts as
a voltage divider circuit. The potentiometer has three wires. Two wires are the reference
voltage inputs, the third wire is the divided voltage output. One voltage wire was connected
to a 5 volt supply pin on the I/O expansion board. The other voltage wire was connected
to a ground pin on the I/O expansion board. The voltage output wire was connected to
the ADC channel 4 on pin AN4 of the PIC32 microcontroller. A voltage between 0 and
5 Volts is fed into the ADC as the potentiometer is turned by rotating the arm connected
to it. The OMECS Client() function requests the conversion results from the ADC every
500 milliseconds. The results are stored in a two position array. The results from the very
first read are duplicated into both positions of the array. The values in both positions are
averaged together to smooth out any big spikes in the data. More averaging could have
been used if required. Empirical testing showed that the data was clean enough to used
based on a two sample average. The ADC returns a 10 bit result. This means a range of 0
to 1023. The averaged result value is scaled down by a factor of 4 to derive the final “level”
of fuel available and transmits that data in an OpenMECS message to the Master node. The
result value is checked to ensure that it is below or equal to the maximum value of 100
(for percentage) is used in case the ADC is inaccurate. The PIC32 Starter board contains a
physical switch that is connected to pin RD7 of the PIC32 microcontroller. When packing

46

the wind speed data into the OpenMECS message, the state of pin RD6 is read. If RD6 is
low a value of “S” is packed into the OpenMECS message, indicating simulated data. If
RD6 is high, a value of ”A” is packed, indicating active data. The system time received is
also packed into the message containing the fuel level. The Fuel Level sensor is pictured in
Figure 4.3.

4.3 Anemometer

Wind Speed is a crucial component of maritime navigation. An anemometer is the device
that is commonly used to measure wind speed. The anemometer proved to be more difficult
than the Fuel Level Sensor in terms of the hardware build. I found a board called the
Peppermill Power Board offered by Microsoft® Research. It converts the voltage generated
by a DC motor into signals which indicate direction and rate of rotation of the motor. The
DC motor has two wires. Both wires are connected to the spring-loaded motor terminals on
the Peppermill board. The Speed output signal from the Peppermill board is connected to
pin AN4 of the PIC32 microcontroller. It was possible to connect the output from the DC
motor directly to the ADC of the PIC32 microcontroller, however the DC motor is capable
of generating more than 5 volts if spun fast enough. This could have damaged the ADC
on the microcontroller. The Peppermill board limits the voltage output of the Speed signal
to a maximum of 5 volts. The Ground signal on the Peppermill board was connected to a
ground pin on the I/O expansion board. When the hub connected to the DC motor is rotated
a signal ranging from 0 volts to 5 volts is fed into the ADC. The OMECS Client() function
requests the conversion results from the ADC every 500 milliseconds. A result calculated
from two averaged samples was also used in the Anemometer application. The averaged
result value is directly as the “speed” of wind and transmitted in an OpenMECS message
to the Master node. The result value is checked to ensure that it is below or equal to a
relatively reasonable maximum value of 999. The Anemometer is not calibrated to actual
read world wind speed. It is only meant to show a simulation of how a real anemometer
device would possible function. Pin RD6 is also used in the Anemometer to pack either
“S” or “A” in the same manner as the Fuel Level Sensor. In the Anemometer a second
switch connected to pin RD7 is also used. If RD7 is low a value of ”K” is packed into the
OpenMECS message, indicating the units used are Knots/h. If RD7 is high a value of ”N”
is packed, indicating the units used are Nautical miles/h. The system time received is also
packed into the message containing the wind speed. The anemometer node is pictured in
Figures 4.4 and 4.5.

47

4.4 Master node

The master node and the display are one in the same for my project demonstration. The
Master node is my laptop PC. Both the Fuel Level Sensor and the Anemometer will receive
their IP address from the master node. The Master node runs free DHCP server software
named The DHCP server [8]. The display of the data received is being done through a
custom Java application I wrote. It handles displaying the fuel level as well as the wind
speed. It also has a configuration page with an option of whether or not to send the ’System
Time’ message, as well as the rate at which to send it if it is enabled. The application also
logs which OpenMECS End nodes are connected to the system. A log of every message is
displayed with the ability to save the log to a file. All errors that are decipherable are also
logged. Figures 4.6, 4.7, and 4.8 depict the operation of the Java application representing
the Master node.

48

Figure 4.2: Project Demonstration Schematic

49

Figure 4.3: Fuel Level Sensor

50

Figure 4.4: Anemometer - Front view

51

Figure 4.5: Anemometer - Back view

52

Figure 4.6: Data Display

53

Figure 4.7: Connected Devices

54

Figure 4.8: Master Setup

55

Chapter 5
Conclusion

I set out to show that it is possible to create a communication specification that allows elec-
tronic devices in marine environments to communicate effectively with each other using
inexpensive and readily available technologies. I have shown that not only is it possible,
but quite effective. I was able to bring two real world prototypes to working order in a very
short time with a minimal budget and little domain knowledge. One of the salient aspects
for me was that, just by following the specification as I wrote it, the technologies seemed to
disappear from the development. I mean to say that the technology of the communication
medium in an of itself was not a hurdle in any way in the development of my prototype
nodes. By relying on available and proven technologies, and the simple specification out-
lined in this paper I was able to concentrate foremost on engineering the electronic and
mechanical portions of the sensing nodes. This goes to show just how easy development
using the OpenMECS standard on top of TCP/IP can be. Not only was the development
easy in terms of technical difficulty, it was inexpensive. The majority of my development
was carried out on my existing home PC and networking equipment. The software tools
I used to develop the demonstration prototypes, including the IDE and the network analy-
sis software was all free. The hardware was very inexpensive. Each Starter Kit with I/O
expansion board ran a total of $144. The remaining parts to complete the electronics and
mechanical packages cost roughly $50.

After all is said and done I believe I have created a specification that will truly give
hobbyists and device manufacturers the ability to create their products easily, inexpensively,
and most importantly without worrying about compatibility. I truly hope that after my work
is complete this standard will be adopted by the community and furthered to its utmost
potential.

5.1 Future Research

Although I was able to achieve the goals I set for myself, there are areas of the specification
that can benefit from further research and development.

5.1.1 Peer to Peer Communication

Along with Master node to End node communication, peer to peer communication would
make a strong addition to OpenMECS. This would effectively remove the idea of a Master
node being required in an OpenMECS network. The idea is basically to allow any node

56

to request data from any other node. There are some complexities that would have to be
worked out such as how does any single node know what other nodes are supposed to be
available on the network?

There are some possibilities such as a discovery protocol. With a discovery protocol a
node may broadcast an initial request to query possible providers of the data it seeks. Nodes
that have the capability to send the data requested would then send a response alerting the
requesting node that they can provide the data requested. Based on the nodes that respond,
the requesting node may request the actual data from one or more of those nodes. Another
possible scenario is to make further use of the Device identification message. If the Device
identification message were to be broadcast by all nodes, then every node on the network
would come to know what data is available for them to request. A potential downfall to
the discovery method is that it could take a large amount of time for the entire network of
OpenMECS nodes to complete the discovery phase and start requesting the data they need.
Add this to the already somewhat long process of DHCP and the entire network could take
a long time to come online. Longer than might be desirable for a ship operator.

Another possibility is that the list of nodes available is pre-programmed into each
End node. In this scenario each End node would also have to have its IP Address pre-
programmed into its memory. DHCP would not be needed in this case. A side effect of
having the IP Address pre-programmed into the node is that the startup time for the node
could be reduced by several seconds.

5.1.2 Security

One aspect of networking that was not discussed in my thesis is security. Although it is
tempting to think that security would not need to be considered in an isolated network like
OpenMECS, recent news regarding hacking of automobile electronics systems [5] leads me
to believe this area would have to be addressed eventually. Some cursory advice might be
to not share an OpenMECS network with any network that has Internet access. There are
no security provisions built into this version of the protocol. Future versions of the protocol
may allow shared networks with well thought out and provisioned network hardware such
as smart switches, and software features such as encryption.

57

References

[1] NMEA-0183 . url http://www.nmea.org/content/nmea standards/nmea 083 v 400
.asp , 2004.

[2] NMEA-2000 . url http://www.nmea.org/content/nmea standards/nmea 2000 ed2
10.asp , 2005.

[3] NMEA 0183 - Wikipedia, the free encyclopedia . url
http://en.wikipedia.org/wiki/NMEA 0183 , 2009.

[4] NMEA 2000 - Wikipedia, the free encyclopedia . url
http://en.wikipedia.org/wiki/NMEA 2000 , 2009.

[5] Andrew Moseman . . url http://blogs.discovermagazine.com/80beats/2010/05/18
/forget-car-jacking-car-hacking-is-the-crime-of-the-future , 2010.

[6] anonymous . NMEA 0183 Datensatze . url
http://www.nmea.de/nmea0183datensaetze.html , 2009.

[7] Glenn Baddeley . Glenn Baddeley - GPS - NMEA sentence information . url
http://home.pacific.net.au/ gnb/gps/nmea.html , 2009.

[8] Uwe Ruttkamp . DHCP Server for Windows . url
http://ruttkamp.gmxhome.de/dhcpsrv/dhcpsrv.htm , 2011.

[9] various . Introducing JSON . url http://www.json.org , 2010.

[10] various . Wireshark . url http://www.wireshark.org/ , 2011.

58

Appendix A
Acronyms and Definitions

Table A.1: Acronyms and Definitions
Term \Acronym Definition

ADC Analog to Digital Converter
API Application Programming Interface

CAN Controller Area Network - protocol by Bosch company
CRC Cyclic Redundancy Check

DHCP Dynamic Host Configuration Protocol - address assignment
End node The class of all devices which are responsible for gathering actual data

and responding to commands/requests from the Master node.
GPS Global Positioning System

HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment, consists of editor, compiler, de-

bugger, and project setup
JSON Javascript Object Notation [9]

Master node The device which requests and processes the OpenMECS data. Only
one of these nodes is allowed per OpenMECS network.

NMEA National Marine Electronics Association
NTP Network Time Protocol
node Any electronic device on the OpenMECS network. Can be either a Mas-

ter node or an End node.
OpenMECS Open Marine Electronics Communication Specification

RAM Random Access Memory
TCP/IP Transmission Control Protocol/Internet Protocol

UDP User Datagram Protocol
USB Universal Serial Bus
UTC Coordinated Universal Time

V Volts or Voltage

59

Appendix B
Source Code

Part of the OpenMECS standard is a reference implementation of the OpenMECS protocol
in the C programming language. C was chosen because it is popular in embedded program-
ming, especially when the embedded equipment consists of low-cost microcontrollers. It
is also embeddable in C++ applications, covering another popular embedded programming
language. Most low-cost microcontrollers are available with cheap or free programming,
compiling, and debugging environments for the C language. All efforts have been made to
make the OpenMECS library as cross-platform compatible as possible. While developing
the library, the microcontroller family used to test the library was the PIC32 family from
Microchip®. The PIC32 is a 32-bit microcontroller family based on the MIPS4000 series
processors.

The source code comprising the OpenMECS API as well as the application code from
the PIC32 projects may be downloaded from the following location:
http://sourceforge.net/projects/openmecs/files/

B.1 JSON parser

The base format for all OpenMECS messages is JSON. cJSON [9] was chosen as the ref-
erence JSON parser. cJSON was chosen for two reasons:

• it is small, fitting in a single C source file combination (.c/.h)

• it is available under the open source MIT license

B.2 OpenMECS API

The following functions are provided as a reference implementation of OpenMECS in the
C language. For the most part they add a small wrapper layer around cJSON.

B.2.1 File: omecs message.c

B.2.1.1 OMECSInit()

void OMECSInit(): initilizes the CRC32 table and the cJSON library.

60

B.2.1.2 createOMECSMessage()

omecs object* createOMECSMessage(omecs bool isDataRequest): Creates a new JSON
object that represent a blank OpenMECS message.

B.2.1.3 createOMECSDataSet()

omecs object* createOMECSDataSet(omecs data set type DataType): Returns a pointer
to an array which is an empty Data Set.

B.2.1.4 addToDataSetContentsArray()

void addToDataSetContentsArray(omecs object *Array, omecs object *newData): Appends
data ’newData’ to the end of the Data Set array ’Array’.

B.2.1.5 addContentToOMECSDataSet()

void addContentToOMECSDataSet(omecs object *DataSet, omecs object *DataContents):
Adds the existing Contents ’DataContents’ to the Data Set ’DataSet’.

B.2.1.6 addDataSetToOMECSMessage()

void addDataSetToOMECSMessage(omecs object *OMECSMessage, omecs object * DataSet):
Adds the existing Data Set ’DataSet’ to the message ’OMECSMessage’.

B.2.1.7 finalizeOMECSMessage()

void finalizeOMECSMessage(omecs object *OMECSMessage): Creates the vailidity value
of the message ’OMECSMessage’ and appends it to the message. The value is the CRC32
value calculated on the message in string format.

B.2.1.8 OMECSMessageToString()

const char* OMECSMessageToString(omecs object *OMECSMessage, omecs bool for-
matted): Returns a char pointer to the string representation of the message ’OMECSMes-
sage’. ’formatted’ indicates whether or not whitespace should be added into the string
for readability purposes. This function is used to create the raw text data which will be
transmitted across the network.

61

B.2.1.9 ParseOMECSMessageText()

omecs object* ParseOMECSMessageText(char * OMECSMessageText): Returns a pointer
to an OpenMECS object which is an in-memory object oriented representation of the string
’OMECSMessageText’. This function is used to parse the text of a received OpenMECS
message.

B.2.1.10 ValidateOMECSMessage()

omecs bool ValidateOMECSMessage(omecs object *OMECSMessage): Returns a boolean
value indicating whether the contents of the message ’OMECSMessage’ check against the
validity value transmitted with the message.

B.2.1.11 isOMECSMessageRequest()

omecs bool isOMECSMessageRequest(omecs object *OMECSMessage): Returns a boolean
value indicating whether the message ’OMECSMessage’ is a request, or contains data.

B.2.1.12 numDataSetsInOMECSMessage()

int numDataSetsInOMECSMessage(omecs object *OMECSMessage): Returns a count of
the number of Data Sets in the message ’OMECSMessage’.

B.2.1.13 getOMECSDataSetArray()

omecs object* getOMECSDataSetArray(omecs object *OMECSMessage): Returns a pointer
to the array containing all Data Sets int the message ’OMECSMessage’.

B.2.1.14 getDataSetFromOMECSDataSetArray()

omecs object* getDataSetFromOMECSDataSetArray(omecs object *DataSetArray, int which-
DataSet): Returns a pointer to the Data Set at index ’WhichDataSet’ within the array
’DataSetArray’.

B.2.1.15 deleteOMECSObject()

void deleteOMECSObject(omecs object *Object): Frees up all memory associated with
the object pointed to by ’Object’.

The source in file omecs message.c is listed as follows:

62

1 / * LICENCE
2 C o p y r i g h t (c) 2010 , Anthony Joseph Arno ld Jr
3 A l l r i g h t s r e s e r v e d .
4
5 R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i t h or w i t h o u t
6 m o d i f i c a t i o n , are p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s are met :
7 * R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t
8 n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
9 * R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above c o p y r i g h t

10 n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e
11 d o c u m e n t a t i o n and / or o t h e r m a t e r i a l s p r o v i d e d w i t h t h e d i s t r i b u t i o n .
12 * The name o f Anthony Joseph Arno ld Jr may n o t be used t o e n d o r s e or promote p r o d u c t s
13 d e r i v e d from t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
14
15 THIS SOFTWARE IS PROVIDED BY Anthony Joseph Arno ld Jr ’ ’ AS IS ’ ’ AND ANY
16 EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED
17 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 DISCLAIMED . IN NO EVENT SHALL Anthony Joseph Arno ld Jr BE LIABLE FOR ANY
19 DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES
20 (INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
21 LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22 ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
23 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 * /
26
27
28 # i n c l u d e <s t d i o . h>
29 # i n c l u d e < s t d l i b . h>
30 # i n c l u d e <s t r i n g . h>
31 # i n c l u d e ” omecs . h ”
32
33 / * *
34 * I n i t i a l i z e s t h e OpenMECS API
35 * /
36 void OMECSInit (void)
37 {
38 / / i n i t i a l i z e t h e CRC32 mechanism
39 g e n c r c t a b l e () ;
40
41 / / i n i t i a l i z e cJSON , by g i v i n g a NULL va lue , cJSON w i l l use s t a n d a r d mal loc , r e a l l o c

and f r e e
42 cJSON Ini tHooks (NULL) ;
43 }
44
45
46 / * *
47 * C r e a t e s a new JSON o b j e c t t h a t r e p r e s e n t a b l a n k OpenMECS message
48 * @returns p o i n t e r t o t h e o m e c s o b j e c t i n s t a n c e c r e a t e d
49 * @param d a t a R e q u e s t i n d i c a t e s whe ther t h e message i s a da ta r e q u e s t
50 * /
51 o m e c s o b j e c t * createOMECSMessage (omecs boo l i s D a t a R e q u e s t)
52 {
53 o m e c s o b j e c t *OMECSMessage ;

63

54
55 / / c r e a t e base JSON o b j e c t
56 OMECSMessage = cJSON Crea t eOb jec t () ;
57
58 i f (OMECSMessage)
59 {
60 / / add f i x e d f i e l d s t o OpenMECS message , i n c l u d i n g an empty Data S e t s a r r a y t o be
61 / / f i l l e d a t a l a t e r t i m e
62 cJSON AddItemToObject (OMECSMessage , ” c o n t e n t ” , c J S O N C r e a t e S t r i n g (”OpenMECS”)) ;
63 cJSON AddItemToObject (OMECSMessage , ” p r o t o c o l V e r s i o n ” , c J S O N C r e a t e S t r i n g (

OMECS PROTOCOL VERSION)) ;
64 cJSON AddItemToObject (OMECSMessage , ” d a t a R e q u e s t ” , ((i s D a t a R e q u e s t == o m e c s t r u e)

? cJSON Crea teTrue () : c J S O N C r e a t e F a l s e ())) ;
65 cJSON AddItemToObject (OMECSMessage , ” d a t a S e t s ” , cJSON Crea teArray ()) ;
66 }
67 re turn OMECSMessage ;
68 }
69
70
71 / * *
72 * C r e a t e s a new JSON o b j e c t t h a t r e p r e s e n t s a b l a n k OpenMECS Data S e t
73 * @returns t h e o m e c s o b j e c t where t h e Data S e t was c r e a t e d
74 * @param DataType i n d i c a t e s what da ta w i l l be i n t h e Data S e t
75 * /
76 o m e c s o b j e c t * createOMECSDataSet (o m e c s d a t a s e t t y p e DataType)
77 {
78 o m e c s o b j e c t * NewDataSet ;
79
80 / / c r e a t e an empty Data S e t w i t h t h e p r o v i d e d DataType
81 NewDataSet = cJSON Crea t eOb jec t () ;
82
83 i f (NewDataSet)
84 {
85 cJSON AddItemToObject (NewDataSet , ” da taType ” , cJSON CreateNumber (DataType)) ;
86 }
87
88 re turn NewDataSet ;
89 }
90
91
92 / * *
93 * Adds da ta i n t o an OpenMECS Data S e t ” d a t a C o n t e n t s ” a r r a y
94 * @param Array t h e a r r a y where t h e da ta w i l l be appended
95 * @param newData t h e da ta t o append t o t h e a r r a y
96 * /
97 void a d d T o D a t a S e t C o n t e n t s A r r a y (o m e c s o b j e c t * Array , o m e c s o b j e c t * newData)
98 {
99 / / a lways r e p l a c e e x i s t i n g a r r a y

100 cJSON AddItemToArray (Array , newData) ;
101 }
102
103
104 / * *
105 * C r e a t e s a new JSON o b j e c t t h a t r e p r e s e n t s a b l a n k OpenMECS Data S e t
106 * @param DataSe t t h e Data S e t where t h e c o n t e n t s w i l l be added

64

107 * @param D a t a C o n t e n t s t h e a c t u a l da ta
108 * /
109 void addContentToOMECSDataSet (o m e c s o b j e c t * DataSe t , o m e c s o b j e c t * D a t a C o n t e n t s)
110 {
111 / / a lways r e p l a c e e x i s t i n g a r r a y
112 cJSON AddItemToObject (DataSe t , ” d a t a C o n t e n t s ” , D a t a C o n t e n t s) ;
113 }
114
115
116 / * *
117 * Adds a f i n i s h e d Data S e t t o an OpenMECS Message
118 * @param OMECSMessage t h e OpenMECS message t o add t h e Data S e t i n t o
119 * @param DataSe t t h e Data S e t b e i n g added t o t h e OpenMECS message
120 * /
121 void addDataSetToOMECSMessage (o m e c s o b j e c t *OMECSMessage , o m e c s o b j e c t * D a t a S e t)
122 {
123 o m e c s o b j e c t * D a t a S e t A r r a y ;
124
125 D a t a S e t A r r a y = cJSON GetObjec t I tem (OMECSMessage , ” d a t a S e t s ”) ;
126
127 / / add da ta s e t o n l y i f a v a l i d p o i n t e r was r e c i e v e d
128 i f (D a t a S e t A r r a y)
129 {
130 cJSON AddItemToArray (Da taSe tAr ray , D a t a S e t) ;
131 }
132 }
133
134
135 / * *
136 * F i n a l i z e s t h e r e m a i n i n g f i e l d s i n t h e OpenMECS message : numBytes and
137 * V a l i d i t y .
138 * @param OMECSMessage t h e OpenMECS message t o f i n a l i z e
139 * /
140 void f inal izeOMECSMessage (o m e c s o b j e c t *OMECSMessage)
141 {
142 char * messageText = ” t e s t t e x t , i g n o r e t h i s ” ;
143 o m e c s o b j e c t * D a t a S e t A r r a y ;
144 unsigned long messageLength = 0 , temp ;
145 unsigned long a r r a y L e n = 0 ;
146 i n t c r c 3 2 = (i n t) c r c 3 2 f i r s t l a s t x o r ;
147
148 / / Get t h e t o t a l number o f Data S e t s i n t h e message
149 D a t a S e t A r r a y = cJSON GetObjec t I tem (OMECSMessage , ” d a t a S e t s ”) ;
150 a r r a y L e n = cJSON GetArraySize (D a t a S e t A r r a y) ;
151 cJSON AddItemToObject (OMECSMessage , ” numDataSets ” , cJSON CreateNumber (a r r a y L e n)) ;
152
153 / / Get t h e message i n t e x t form
154 messageText = OMECSMessageToString (OMECSMessage , o m e c s f a l s e) ;
155
156 / / Get t h e l e n g t h o f t h e message t e x t , a d j u s t e d t o remove f i r s t an l a s t c h a r s
157 messageLength = s t r l e n (messageText) ;
158 messageLength −=2;
159
160 / / f e e d t h e s t r i n g i n t o t h e CRC32 f u n c t i o n s , b e g i n n i n g w i t h t h e b y t e a f t e r t h e open ing

brace

65

161 / / and en d i ng w i t h t h e b y t e b e f o r e t h e en d i ng brace
162 temp = u p d a t e c r c (c r c 3 2 f i r s t l a s t x o r , (messageText + 1) , messageLength) ;
163 c r c 3 2 = (i n t) temp ;
164 c r c 3 2 ˆ= c r c 3 2 f i r s t l a s t x o r ;
165 / / p r i n t f (”CRC: %d\n ” , temp) ;
166
167 / / f r e e up t h e memory i n messageTex t
168 f r e e (messageText) ;
169
170 / / Add crc32 t o t h e OpenMECS message
171 cJSON AddItemToObject (OMECSMessage , ” v a l i d i t y ” , cJSON CreateNumber (c r c 3 2)) ;
172 }
173
174
175 / * *
176 * c r e a t e s a s t r i n g r e p r e s e n t i n g t h e e n t i r e o m e c s o b j e c t
177 * @returns a s t r i n g r e p r e s e n t i n g t h e e n t i r e OpenMECS message
178 * @param OMECSMessage t h e OpenMECS message t o f i n a l i z e
179 * @param f o r m a t t e d t r u e i n d i c a t e s t h a t a f o r m a t t e d (w i t h w h i t e space) message s h o u l d
180 * be r e t u r n e d , as opposed t o u n f o r m a t t e d
181 * /
182 c o n s t char * OMECSMessageToString (o m e c s o b j e c t *OMECSMessage , omecs boo l f o r m a t t e d)
183 {
184 re turn (f o r m a t t e d == o m e c s t r u e) ? cJSON Pr in t (OMECSMessage) : c J S O N P r i n t U n f o r m a t t e d (

OMECSMessage) ;
185 }
186
187
188 / * *
189 * C r e a t e s an OpenMECS o b j e c t from a JSON t e x t s t r i n g
190 * @returns a p o i n t e r t o t h e OpenMECS o b j e c t t h a t was c r e a t e d
191 * @param t h e JSON t e x t s t r i n g t o p a r s e
192 * /
193 o m e c s o b j e c t * ParseOMECSMessageText (char * OMECSMessageText)
194 {
195 re turn cJSON Parse (OMECSMessageText) ;
196 }
197
198
199 / * *
200 * V a l i d a t e s an OpenMECS message by c h e c k i n g t h e CRC32 a g a i n s t t h e
201 * c o n t e n t s o f t h e message
202 * @returns a boo lean i n d i c a t i n g v a l i d i t y o f t h e message
203 * @param t h e OMECSMessage t o v a l i d a t e
204 * /
205 omecs boo l ValidateOMECSMessage (o m e c s o b j e c t *OMECSMessage)
206 {
207 char * t e x t , * p t r , * n e w s t r ;
208 i n t l e n =0;
209 i n t v a l i d i t y = cJSON GetObjec t I tem (OMECSMessage , ” v a l i d i t y ”)−>v a l u e i n t ;
210 i n t c r c 3 2 = c r c 3 2 f i r s t l a s t x o r ;
211
212 / / g e t message t e x t and p e e l o f f open ing brace p e e l o f f open ing brace
213 t e x t = OMECSMessageToString (OMECSMessage , o m e c s f a l s e) ;
214

66

215 / / p e e l o f f e v e r y t h i n g p a s t v a l i d i t y
216 p t r = s t r s t r (t e x t , ” v a l i d i t y ”) ;
217 l e n = p t r − t e x t − 3 ;
218
219 n e w s t r = ma l lo c (l e n +1) ;
220 n e w s t r [l e n] = 0 ;
221 memcpy (news t r , t e x t +1 , l e n) ;
222
223 / / p r i n t f (” V a l i d a t i n g : \n\n%s\n\n ” , n e w s t r) ;
224
225 / / f e e d t h e s t r i n g i n t o t h e CRC32 f u n c t i o n s , b e g i n n i n g w i t h t h e b y t e a f t e r t h e open ing

brace
226 / / and en d i ng w i t h t h e b y t e b e f o r e t h e en d i ng brace
227 c r c 3 2 = (i n t) u p d a t e c r c (c r c 3 2 f i r s t l a s t x o r , news t r , l e n) ;
228 c r c 3 2 ˆ= c r c 3 2 f i r s t l a s t x o r ;
229
230 re turn (v a l i d i t y == c r c 3 2) ? o m e c s t r u e : o m e c s f a l s e ;
231 }
232
233
234 / * *
235 * I n d i c a t e s whe ther a message i s a r e q u e s t , or c o n t a i n s da ta
236 * @returns a boo lean i n d i c a t i n g t r u e i f message i s a r e q u e s t
237 * @param t h e OMECSMessage t o check
238 * /
239 omecs boo l isOMECSMessageRequest (o m e c s o b j e c t *OMECSMessage)
240 {
241 o m e c s o b j e c t * r e q u e s t = cJSON GetObjec t I tem (OMECSMessage , ” d a t a R e q u e s t ”) ;
242
243 re turn (r e q u e s t−>t y p e == cJSON True) ? o m e c s t r u e : o m e c s f a l s e ;
244 }
245
246
247 / * *
248 * I n d i c a t e s t h e number o f Data s e t s c o n t a i n e d i n t h e message
249 * @returns t h e number o f Data s e t s i n t h e message
250 * @param t h e OMECSMessage t o check
251 * /
252 i n t numDataSetsInOMECSMessage (o m e c s o b j e c t *OMECSMessage)
253 {
254 re turn cJSON GetObjec t I tem (OMECSMessage , ” numDataSets ”)−>v a l u e i n t ;
255 }
256
257
258 / * *
259 * Get t h e p o i n t e r t o t h e a r r a y c o n t a i n i n g a l l Data S e t s
260 * @returns p o i n t e r t o t h e a r r a y
261 * @param t h e OMECSMessage t o g e t a r r a y from
262 * /
263 o m e c s o b j e c t * getOMECSDataSetArray (o m e c s o b j e c t *OMECSMessage)
264 {
265 re turn cJSON GetObjec t I tem (OMECSMessage , ” d a t a S e t s ”) ;
266 }
267
268

67

269 / * *
270 * Get t h e p o i n t e r t o t h e a r r a y c o n t a i n i n g a l l Data S e t s
271 * @returns p o i n t e r t o t h e a r r a y
272 * @param t h e OMECSMessage t o g e t a r r a y from
273 * /
274 o m e c s o b j e c t * getDataSetFromOMECSDataSetArray (o m e c s o b j e c t * Da taSe tAr ray , i n t whichDa taSe t

)
275 {
276 re turn cJSON GetArrayI tem (Da taSe tAr ray , wh ichDa taSe t) ;
277 }
278
279
280
281
282 void deleteOMECSObject (o m e c s o b j e c t * O b j e c t)
283 {
284 cJSON Dele te (O b j e c t) ;
285 }

B.2.2 File: omecs.h

In addition to type definitions, this header also contains the following function macros:

B.2.2.1 createOMECSdataContentsArray()

#define createOMECSdataContentsArray(): Creates an empty array to hold the Data Con-
tents portion of a Data Set. Returns a pointer to the empty array.

B.2.2.2 createOMECSstring()

#define createOMECSstring(string): Creates a string that can be used in an OpenMECS
message. Returns a char pointer to the string.

B.2.2.3 createOMECSboolean()

#define createOMECSboolean(bool): Creates a boolean value that can be used in an Open-
MECS message. Returns the created boolean.

B.2.2.4 createOMECSnumber()

#define createOMECSnumber(number): Creates a number, real or integer, that can be used
in an OpenMECS message. Returns the created number.

This file expects the cJSON library to be in a folder one level deeper than the this file.
It also expects the user to provide a crc32.h header file which defines the following two
functions:

68

• void gen crctable();

• unsigned long update crc(unsigned long crc accum, char *data blk ptr, int data blk size);

The function gen crc table() should generate a table of all possible CRC32 calculations
for a data space of 8 bits. The function update crc() should have access to the above table
and use it to calculate the CRC32 value of ‘data blk ptr’ with a size of ‘data blk size’ and
a starting CRC32 value of ‘crc accum’. Many examples of a table based CRC32 algorithm
are availble online. I found one at the following location: http:www.packet.ccfilesCRC32-
code.html

The source in file omecs.h is listed as follows:

1 / * LICENCE
2 C o p y r i g h t (c) 2010 , Anthony Joseph Arno ld Jr
3 A l l r i g h t s r e s e r v e d .
4
5 R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i t h or w i t h o u t
6 m o d i f i c a t i o n , are p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s are met :
7 * R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t
8 n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
9 * R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above c o p y r i g h t

10 n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e
11 d o c u m e n t a t i o n and / or o t h e r m a t e r i a l s p r o v i d e d w i t h t h e d i s t r i b u t i o n .
12 * The name o f Anthony Joseph Arno ld Jr may n o t be used t o e n d o r s e or promote p r o d u c t s
13 d e r i v e d from t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
14
15 THIS SOFTWARE IS PROVIDED BY Anthony Joseph Arno ld Jr ’ ’ AS IS ’ ’ AND ANY
16 EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED
17 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 DISCLAIMED . IN NO EVENT SHALL Anthony Joseph Arno ld Jr BE LIABLE FOR ANY
19 DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES
20 (INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;
21 LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22 ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
23 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 * /
26
27 / *
28
29 T h i s i s t h e r o o t API f i l e f o r t h e OpenMECS l i b r a r y . A l l p u b l i c
30 OpenMECS f u n c t i o n p r o t o t y p e s and t y p e d e f i n i t i o n s are l o c a t e d i n
31 t h i s header f i l e . Other header f i l e s c o n t a i n p r i v a t e f u n c t i o n
32 p r o t o t y p e s and t y p e d e f i n i t i o n s .
33
34 To use t h e OpenMECS l i b r a r y copy t h e omecs s o u r c e f o l d e r i n t o your
35 s o u r c e t r e e . Then i n c l u d e t h i s header f i l e i n your C Source code as
36 f o l l o w s :
37
38 # i n c l u d e ”omecs\omecs . h”
39

69

40 * /
41
42 # i f n d e f OMECS API HEADER
43 # d e f i n e OMECS API HEADER
44
45 / / ********** V e r s i o n i d e n t i f i c a t i o n **********
46
47 # d e f i n e OMECS VERSION ” 0 . 0 . 1 ”
48
49 # d e f i n e OMECS PROTOCOL VERSION ” 1 ”
50
51
52
53 / / ********** Header i n c l u d e s **********
54
55 / / Using cJSON l i b r a r y
56 # i n c l u d e ”cJSON\cJSON . h ”
57
58 / / CRC32 l i b r a r y
59 # i n c l u d e ” c r c 3 2 . h ”
60
61
62 / / ********** P r e p r o c e s s o r D e f i n i t i o n s ********
63
64 # d e f i n e o m e c s o b j e c t cJSON
65
66 # d e f i n e c r c 3 2 f i r s t l a s t x o r 0xFFFFFFFF
67
68
69
70 / / ********** Data Type D e f i n i t i o n s **********
71
72 / / Make s u r e OpenMECS boo lean d e f i n i t s i o n are n o t c o l l i d i n g w i t h o t h e r d e f i n i t i o n s
73 t y p e d e f enum
74 {
75 o m e c s f a l s e ,
76 o m e c s t r u e
77 } omecs boo l ;
78
79
80 t y p e d e f enum
81 {
82 o m e c s d a t a t y p e n o n e =0 ,
83 o m e c s d a t a t y p e D e v i c e I d e n t i f i c a t i o n =1 ,
84 o m e c s d a t a t y p e S y s t e m T i m e =2 ,
85 o m e c s d a t a t y p e L a t i t u d e L o n g i t u d e =10 ,
86 o m e c s d a t a t y p e A l t i t u d e =11 ,
87 o m e c s d a t a t y p e B e a r i n g =12 ,
88 o m e c s d a t a t y p e V e l o c i t y =13 ,
89 o m e c s d a t a t y p e R a t e O f T u r n =14 ,
90 o m e c s d a t a t y p e A i r T e m p e r a t u r e =30 ,
91 o m e c s d a t a t y p e W a t e r T e m p e r a t u r e =31 ,
92 o m e c s d a t a t y p e W i n d S p e e d =32 ,
93 o m e c s d a t a t y p e W i n d A n g l e =33 ,
94 o m e c s d a t a t y p e F u e l L e v e l =50 ,

70

95 o m e c s d a t a t y p e B a t t e r y L e v e l =51 ,
96 o m e c s d a t a t y p e E n g i n e R e v o l u t i o n s =52 ,
97 o m e c s d a t a t y p e R u d d e r A n g l e =53 ,
98 o m e c s d a t a t y p e P o w e r p l a n t O p e r a t i o n a l S t a t u s =54
99 } o m e c s d a t a s e t t y p e ;

100
101
102
103
104
105
106 / / ********** API F u n c t i o n p r o t o t y p e s **********
107 void OMECSInit () ;
108
109 o m e c s o b j e c t * createOMECSMessage (omecs boo l i s D a t a R e q u e s t) ;
110
111 o m e c s o b j e c t * createOMECSDataSet (o m e c s d a t a s e t t y p e DataType) ;
112
113 void a d d T o D a t a S e t C o n t e n t s A r r a y (o m e c s o b j e c t * Array , o m e c s o b j e c t * newData) ;
114
115 void addContentToOMECSDataSet (o m e c s o b j e c t * DataSe t , o m e c s o b j e c t * D a t a C o n t e n t s) ;
116
117 void addDataSetToOMECSMessage (o m e c s o b j e c t *OMECSMessage , o m e c s o b j e c t * D a t a S e t) ;
118
119 void f inal izeOMECSMessage (o m e c s o b j e c t *OMECSMessage) ;
120
121 c o n s t char * OMECSMessageToString (o m e c s o b j e c t *OMECSMessage , omecs boo l f o r m a t t e d) ;
122
123 o m e c s o b j e c t * ParseOMECSMessageText (char * OMECSMessageText) ;
124
125 omecs boo l ValidateOMECSMessage (o m e c s o b j e c t *OMECSMessage) ;
126
127 omecs boo l isOMECSMessageRequest (o m e c s o b j e c t *OMECSMessage) ;
128
129 i n t numDataSetsInOMECSMessage (o m e c s o b j e c t *OMECSMessage) ;
130
131 o m e c s o b j e c t * getOMECSDataSetArray (o m e c s o b j e c t *OMECSMessage) ;
132
133 o m e c s o b j e c t * getDataSetFromOMECSDataSetArray (o m e c s o b j e c t * Da taSe tAr ray , i n t whichDa taSe t

) ;
134
135 void deleteOMECSObject (o m e c s o b j e c t * O b j e c t) ;
136
137 # d e f i n e c rea teOMECSda taConten t sAr ray () cJSON Crea teArray ()
138
139 # d e f i n e crea teOMECSst r ing (s t r i n g) c J S O N C r e a t e S t r i n g (s t r i n g)
140
141 # d e f i n e createOMECSboolean (boo l) ((boo l == o m e c s t r u e) ? cJSON Crea teTrue () : c J S O N C r e a t e F a l s e

()
142
143 # d e f i n e createOMECSnumber (number) cJSON CreateNumber (number)
144
145
146 # e n d i f

71

B.3 Source Code for PIC32 Specific Implementation

B.3.1 File: omecs client.c

This is the main source file for the End node application. It impements both the Anemome-
ter and Fuel Level sensor functionality.

1 / *
2 *
3 * OMECS C l i e n t
4 * /
5
6 # i n c l u d e <s t d i o . h>
7 # i n c l u d e <p l i b . h>
8 # i n c l u d e < s t d l i b . h>
9 # i n c l u d e <a s s e r t . h>

10 # i n c l u d e <s t r i n g . h>
11 # i n c l u d e <c t y p e . h>
12 # i n c l u d e <t ime . h>
13 # i n c l u d e <TCPIP−BSD\ t c p i p b s d . h>
14 # i n c l u d e ” omecs . h ”
15 # i n c l u d e ” o m e c s c l i e n t . h ”
16
17 / / p r i v a t e f u n c t i o n p r o t o t y p e s :
18 void ProcessRecvdMessage (o m e c s o b j e c t * t h e O b j e c t) ;
19
20
21 / / IOPORT b i t masks can be found i n p o r t s . h
22 # d e f i n e CONFIG (CN OFF)
23 # d e f i n e PINS (0)
24 # d e f i n e PULLUPS (CN15 PULLUP ENABLE | CN16 PULLUP ENABLE)
25 # d e f i n e INTERRUPT (CHANGE INT ON | CHANGE INT PRI 2)
26
27 / / temp d e f i n e f o r which board c o n f i g t h i s i s
28 # d e f i n e WINDSPEED 1
29
30
31 SOCKADDR IN s e r v e r I P A d d r e s s ;
32 SOCKADDR IN myIPAddress ;
33 char myIPAddressS t r [1 6] = ” ” ;
34 BOOL O M E C S i n i t i a l i z e d = FALSE ;
35 SOCKET mySocket ;
36 UINT t i c k s P e r Q u a r t S e c o n d ;
37 BOOL q u a r t e r S e c o n d = FALSE ;
38 UINT dev ice IDCoun t = 9 ;
39 UINT d a t a C o u n t ;
40 UINT t i c k s ;
41 o m e c s o b j e c t * dev ice IDMessage ;
42 o m e c s o b j e c t * d e v i c e I D D a t a S e t ;
43 o m e c s o b j e c t * d e v i c e I D D a t a S e t C o n t e n t s ;
44 o m e c s o b j e c t * d e v i c e I D D a t a S e t C o n t e n t s 1 ;
45 o m e c s o b j e c t * recvdMessage ;
46 char * d e v i c e I D M e s s a g e S t r ;
47

72

48 o m e c s o b j e c t * da taMessage ;
49 o m e c s o b j e c t * d a t a D a t a S e t ;
50 o m e c s o b j e c t * d a t a D a t a S e t C o n t e n t s ;
51 char * d a t a M e s s a g e S t r ;
52 UINT f u e l L e v e l =0 ;
53 double windSpeed = 0 . 0 ;
54
55 char systemTime [1 3] = ” 9 9 : 9 9 : 9 9 : 9 9 9 ” ;
56 unsigned i n t c h a n n e l 4 [2] ; / / c o n v e r s i o n r e s u l t as read from r e s u l t b u f f e r
57 unsigned i n t c h a n n e l 5 ; / / c o n v e r s i o n r e s u l t as read from r e s u l t b u f f e r
58 unsigned i n t o f f s e t ; / / b u f f e r o f f s e t t o p o i n t t o t h e base o f t h e i d l e b u f f e r
59 unsigned i n t analogTemp ; / / used f o r t emporary s t o r a g e d u r i n g c a l c u l a t i o n s based on

ana log da ta
60 unsigned char r e s u l t s I n d e x ;
61
62 void OMECS Cl ien t In i t (IP ADDR s e r v e r A d d r e s s , DWORD myAddress)
63 {
64 i n t i = 0 ;
65 i n t o f f s e t = 0 ;
66 char a [4] , b [4] , c [4] , d [4] ;
67 i n t e r r ;
68
69 s e r v e r I P A d d r e s s . s i n p o r t = C OMECSPORT;
70 s e r v e r I P A d d r e s s . s i n f a m i l y = AF INET ;
71 s e r v e r I P A d d r e s s . s i n a d d r . S un . S un b . s b 1 = s e r v e r A d d r e s s . v [3] ;
72 s e r v e r I P A d d r e s s . s i n a d d r . S un . S un b . s b 2 = s e r v e r A d d r e s s . v [2] ;
73 s e r v e r I P A d d r e s s . s i n a d d r . S un . S un b . s b 3 = s e r v e r A d d r e s s . v [1] ;
74 s e r v e r I P A d d r e s s . s i n a d d r . S un . S un b . s b 4 = s e r v e r A d d r e s s . v [0] ;
75
76
77 myIPAddress . s i n p o r t = C OMECSPORT;
78 myIPAddress . s i n f a m i l y = AF INET ;
79 myIPAddress . s i n a d d r . S un . S un b . s b 1 = (myAddress & 0 x000000FF) ;
80 myIPAddress . s i n a d d r . S un . S un b . s b 2 = (myAddress & 0 x0000FF00) >> 8 ;
81 myIPAddress . s i n a d d r . S un . S un b . s b 3 = (myAddress & 0 x00FF0000) >> 1 6 ;
82 myIPAddress . s i n a d d r . S un . S un b . s b 4 = (myAddress & 0 xFF000000) >> 2 4 ;
83
84
85 / / c r e a t e t h e s o c k e t on t h e OpenMECS p o r t
86 mySocket = s o c k e t (AF INET , SOCK DGRAM, IPPROTO UDP) ;
87
88 / / b ind s o c k e t t o r e c e i v e d DHCP a d d r e s s e s
89 e r r = b ind (mySocket , (LPSOCKADDR)&myIPAddress , s i z e o f (s t r u c t s o c k a d d r)) ;
90
91 / / check i f b ind was s u c c e s s f u l l
92 i f (e r r == 0) O M E C S i n i t i a l i z e d = TRUE;
93
94 / / s e t up c o u n t e r v a r i a b l e s f o r t i m i n g p u r p o s e s
95 t i c k s P e r Q u a r t S e c o n d = S y s t e m T i c k G e t R e s o l u t i o n () * 315 ;
96 t i c k s = 0 ;
97 q u a r t e r S e c o n d = 0 ;
98 dev ice IDCoun t = 0 ;
99 d a t a C o u n t = 0 ;

100
101 / * s t r i n g r e p r e s e n t a t i o n o f t h e boards IP a d d r e s s

73

102 * /
103 i t o a (myIPAddress . s i n a d d r . S un . S un b . s b1 , a , 10) ;
104 i t o a (myIPAddress . s i n a d d r . S un . S un b . s b2 , b , 10) ;
105 i t o a (myIPAddress . s i n a d d r . S un . S un b . s b3 , c , 10) ;
106 i t o a (myIPAddress . s i n a d d r . S un . S un b . s b4 , d , 10) ;
107 s t r c a t (myIPAddressSt r , a) ;
108 s t r c a t (myIPAddressSt r , ” . ”) ;
109 s t r c a t (myIPAddressSt r , b) ;
110 s t r c a t (myIPAddressSt r , ” . ”) ;
111 s t r c a t (myIPAddressSt r , c) ;
112 s t r c a t (myIPAddressSt r , ” . ”) ;
113 s t r c a t (myIPAddressSt r , d) ;
114
115 / * i n i t OMECS API
116 * /
117 OMECSInit () ;
118
119
120
121 / / s e t up t h e S w i t c h p i n s as i n p u t s
122 / / PORTD . RD6 , RD7 as i n p u t s
123 / / c o u l d a l s o use mPORTDSetPinsDig i ta l In (BIT 6 | BIT 7) ;
124 P O R T S e t P i n s D i g i t a l I n (IOPORT D , BIT 6 | BIT 7) ;
125
126 / / Enable change n o t i c e , e n a b l e d i s c r e t e p i n s and weak p u l l u p s
127 mCNOpen(CONFIG , PINS , PULLUPS) ;
128
129 / / c o n f i g u r e and e n a b l e t h e ADC
130 CloseADC10 () ; / / e n s u r e t h e ADC i s o f f b e f o r e s e t t i n g t h e c o n f i g u r a t i o n
131
132 / / d e f i n e s e t u p p a r a m e t e r s f o r OpenADC10
133 / / Turn module on | oupu t i n i n t e g e r | t r i g g e r mode

au to | e n a b l e a u t o s a m p l e
134 # d e f i n e PARAM1 ADC FORMAT INTG | ADC CLK AUTO | ADC AUTO SAMPLING ON
135
136 / / d e f i n e s e t u p p a r a m e t e r s f o r OpenADC10
137 / / ADC r e f e x t e r n a l | d i s a b l e o f f s e t t e s t |

d i s a b l e scan mode | per form 2 sample s | use dua l b u f f e r s | use a l t e r n a t e mode
138 # d e f i n e PARAM2 ADC VREF AVDD AVSS | ADC OFFSET CAL DISABLE | ADC SCAN OFF |

ADC SAMPLES PER INT 2 | ADC ALT BUF ON | ADC ALT INPUT ON
139
140 / / d e f i n e s e t u p p a r a m e t e r s f o r OpenADC10
141 / / u se ADC i n t e r n a l c l o c k | s e t sample t i m e
142 # d e f i n e PARAM3 ADC CONV CLK INTERNAL RC | ADC SAMPLE TIME 15
143
144
145 / / d e f i n e s e t u p p a r a m e t e r s f o r OpenADC10
146 / / s e t AN4 and AN5 as ana log i n p u t s
147 # d e f i n e PARAM4 ENABLE AN4 ANA | ENABLE AN5 ANA
148
149
150 / / d e f i n e s e t u p p a r a m e t e r s f o r OpenADC10
151 / / do n o t a s s i g n c h a n n e l s t o scan
152 # d e f i n e PARAM5 SKIP SCAN ALL
153

74

154 / / u se ground as neg r e f f o r A | use AN4 f o r i n p u t A | use ground as neg r e f
f o r A | use AN5 f o r i n p u t B

155
156 / / c o n f i g u r e t o sample AN4 & AN5
157 SetChanADC10 (ADC CH0 NEG SAMPLEA NVREF | ADC CH0 POS SAMPLEA AN4 |

ADC CH0 NEG SAMPLEB NVREF | ADC CH0 POS SAMPLEB AN5) ; / / c o n f i g u r e t o sample
AN4 & AN5

158 OpenADC10 (PARAM1, PARAM2, PARAM3, PARAM4, PARAM5) ; / / c o n f i g u r e ADC u s i n g t h e
p a r a m e t e r s d e f i n e d above

159
160 EnableADC10 () ; / / Enable t h e ADC
161
162 }
163
164
165 char * d a t a ;
166
167 void OMECS Client ()
168 {
169 / / l o c a l da ta
170 i n t l en , s e n t , r e c v F l a g , i =0 ;
171 char * p t r 1 , * p t r 2 ;
172 char t e s t [2 0] ;
173 s t a t i c UINT f i r s t A n a l o g R e a d = 1 ;
174
175 / / up da t e t i c k s
176 t i c k s ++;
177 i f (t i c k s >= t i c k s P e r Q u a r t S e c o n d)
178 {
179 q u a r t e r S e c o n d = TRUE;
180 t i c k s = 0 ;
181 }
182
183 / / e n s u r e i n i t i a l i z a t i o n was s u c c e s s f u l b e f o r e do ing a n y t h i n g
184 i f (O M E C S i n i t i a l i z e d)
185 {
186
187 i f (q u a r t e r S e c o n d)
188 {
189 dev ice IDCoun t ++;
190 d a t a C o u n t ++;
191 q u a r t e r S e c o n d = FALSE ;
192 }
193
194 / / Send Dev ice ID once e v e r y 10 s e c o n d s
195 i f (dev ice IDCoun t >= C DEVICE ID PERIOD)
196 {
197 / * i n i t Dev ice ID p a c k e t t o send t o Master node
198 * /
199 dev iceIDMessage = createOMECSMessage (o m e c s f a l s e) ;
200 d e v i c e I D D a t a S e t = createOMECSDataSet (

o m e c s d a t a t y p e D e v i c e I d e n t i f i c a t i o n) ;
201 d e v i c e I D D a t a S e t C o n t e n t s = cJSON Crea teArray () ;
202 d e v i c e I D D a t a S e t C o n t e n t s 1 = cJSON Crea teArray () ;
203 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

75

crea teOMECSst r ing (myIPAddressS t r)) ;
204 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (C MACADDR)) ;
205 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (C MAKE)) ;
206 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (C MODEL)) ;
207 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

createOMECSnumber (C SERIAL)) ;
208 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

createOMECSnumber (C PART)) ;
209 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

createOMECSnumber (1)) ;
210
211 / / pack t h e ” s u p p o r t e d da ta s e t s ” based on which board t h i s i s
212 # i f WINDSPEED == 1
213 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s 1 ,

createOMECSnumber (o m e c s d a t a t y p e W i n d S p e e d)) ;
214 # e l s e
215 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s 1 ,

createOMECSnumber (o m e c s d a t a t y p e F u e l L e v e l)) ;
216 # e n d i f
217 a d d T o D a t a S e t C o n t e n t s A r r a y (d e v i c e I D D a t a S e t C o n t e n t s ,

d e v i c e I D D a t a S e t C o n t e n t s 1) ;
218 addContentToOMECSDataSet (d e v i c e I D D a t a S e t , d e v i c e I D D a t a S e t C o n t e n t s)

;
219 addDataSetToOMECSMessage (deviceIDMessage , d e v i c e I D D a t a S e t) ;
220 final izeOMECSMessage (dev ice IDMessage) ;
221 d e v i c e I D M e s s a g e S t r = OMECSMessageToString (deviceIDMessage ,

o m e c s f a l s e) ;
222 deleteOMECSObject (dev ice IDMessage) ;
223
224 / / send p a c k e t
225 l e n = s t r l e n (d e v i c e I D M e s s a g e S t r) ;
226 s e n t = s e n d t o (mySocket , dev i ce IDMessageS t r , l en , 0 , (LPSOCKADDR)&

s e r v e r I P A d d r e s s , s i z e o f (s t r u c t s o c k a d d r)) ;
227
228 f r e e (d e v i c e I D M e s s a g e S t r) ;
229
230 i f (s e n t == l e n)
231 {
232 l e n = 0 ;
233 }
234 dev ice IDCoun t = 0 ;
235 } / / End d e v i c e ID message
236
237 i f (d a t a C o u n t >= C MESSAGE PERIOD)
238 {
239
240 # i f WINDSPEED == 1
241 / / make wind speed message
242
243
244 / / Read t h e ADC
245 o f f s e t = 8 * ((˜ ReadActiveBufferADC10 () & 0x01)) ; / / d e t e r m i n e

76

which b u f f e r i s i d l e and c r e a t e an o f f s e t
246 c h a n n e l 4 [r e s u l t s I n d e x] = ReadADC10 (o f f s e t) ; / / read

t h e r e s u l t o f c h a n n e l 4 c o n v e r s i o n from t h e i d l e b u f f e r
247 c h a n n e l 5 = ReadADC10 (o f f s e t + 1) ; / / read t h e r e s u l t o f

c h a n n e l 5 c o n v e r s i o n from t h e i d l e b u f f e r
248
249 / / i f t h i s i s t h e v e r y f i r s t read , a s s i g n t h e read da ta i n t o a l l

a r r a y p o s i t i o n s
250 i f (f i r s t A n a l o g R e a d)
251 {
252 c h a n n e l 4 [1] = c h a n n e l 4 [0] ;
253 f i r s t A n a l o g R e a d = 0 ;
254 }
255
256 / / upda ted r e s u l t s a r r a y i n d e x (a r r a y used t o smooth t h e ana log

da ta)
257 i f (r e s u l t s I n d e x < 1)
258 {
259 r e s u l t s I n d e x ++;
260 } e l s e
261 {
262 r e s u l t s I n d e x = 0 ;
263 }
264
265 / / ave rage ana log da ta
266 analogTemp = (c h a n n e l 4 [0] + c h a n n e l 4 [1]) / 2 ;
267 / / check range o f read da ta
268 i f (analogTemp <= 999)
269 {
270 windSpeed = analogTemp ;
271 } e l s e
272 {
273 windSpeed = 999 ;
274 }
275
276
277
278
279 da taMessage = createOMECSMessage (o m e c s f a l s e) ;
280 d a t a D a t a S e t = createOMECSDataSet (o m e c s d a t a t y p e W i n d S p e e d) ;
281 d a t a D a t a S e t C o n t e n t s = cJSON Crea teArray () ;
282 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s , c rea teOMECSst r ing (

systemTime)) ;
283 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s , createOMECSnumber (

windSpeed)) ;
284
285 / / base t h e K / N /M f l a g on t h e p o s i t i o n o f SW2 on t h e board
286 i f (PORTDbits . RD7 == 0)
287 {
288 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (”K”)) ;
289 }
290 e l s e
291 {
292 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s ,

77

crea teOMECSst r ing (”N”)) ;
293 }
294
295 / / base t h e A / N / S f l a g on t h e p o s i t i o n o f SW1 on t h e board
296 i f (PORTDbits . RD6 == 0)
297 {
298 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (”S”)) ;
299 }
300 e l s e
301 {
302 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (”A”)) ;
303 }
304
305 addContentToOMECSDataSet (d a t a D a t a S e t , d a t a D a t a S e t C o n t e n t s) ;
306 addDataSetToOMECSMessage (da taMessage , d a t a D a t a S e t) ;
307 final izeOMECSMessage (da taMessage) ;
308 d a t a M e s s a g e S t r = OMECSMessageToString (da taMessage , o m e c s f a l s e) ;
309
310 # e l s e
311 / / make f u e l l e v e l message
312 / / Read t h e ADC
313 o f f s e t = 8 * ((˜ ReadActiveBufferADC10 () & 0x01)) ; / / d e t e r m i n e

which b u f f e r i s i d l e and c r e a t e an o f f s e t
314 c h a n n e l 4 [r e s u l t s I n d e x] = ReadADC10 (o f f s e t) ; / / read

t h e r e s u l t o f c h a n n e l 4 c o n v e r s i o n from t h e i d l e b u f f e r
315 c h a n n e l 5 = ReadADC10 (o f f s e t + 1) ; / / read t h e r e s u l t o f

c h a n n e l 5 c o n v e r s i o n from t h e i d l e b u f f e r
316
317 / / i f t h i s i s t h e v e r y f i r s t read , a s s i g n t h e read da ta i n t o a l l

a r r a y p o s i t i o n s
318 i f (f i r s t A n a l o g R e a d)
319 {
320 c h a n n e l 4 [1] = c h a n n e l 4 [0] ;
321 f i r s t A n a l o g R e a d = 0 ;
322 }
323
324 / / upda ted r e s u l t s a r r a y i n d e x (a r r a y used t o smooth t h e ana log

da ta)
325 i f (r e s u l t s I n d e x < 1)
326 {
327 r e s u l t s I n d e x ++;
328 } e l s e
329 {
330 r e s u l t s I n d e x = 0 ;
331 }
332
333 / / ave rage ana log da ta
334 analogTemp = (c h a n n e l 4 [0] + c h a n n e l 4 [1]) / 2 ;
335 / / check range o f read da ta
336 i f ((analogTemp / 4) <= 100)
337 {
338 f u e l L e v e l = analogTemp / 4 ;
339 } e l s e

78

340 {
341 f u e l L e v e l = 100 ;
342 }
343
344 da taMessage = createOMECSMessage (o m e c s f a l s e) ;
345 d a t a D a t a S e t = createOMECSDataSet (o m e c s d a t a t y p e F u e l L e v e l) ;
346 d a t a D a t a S e t C o n t e n t s = cJSON Crea teArray () ;
347 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s , c rea teOMECSst r ing (

systemTime)) ;
348 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s , createOMECSnumber (

f u e l L e v e l)) ;
349
350 / / base t h e A / N / S f l a g on t h e p o s i t i o n o f SW1 on t h e board
351 i f (PORTDbits . RD6 == 0)
352 {
353 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (”S”)) ;
354
355 }
356 e l s e
357 {
358 a d d T o D a t a S e t C o n t e n t s A r r a y (d a t a D a t a S e t C o n t e n t s ,

c rea teOMECSst r ing (”A”)) ;
359 }
360
361 addContentToOMECSDataSet (d a t a D a t a S e t , d a t a D a t a S e t C o n t e n t s) ;
362 addDataSetToOMECSMessage (da taMessage , d a t a D a t a S e t) ;
363 final izeOMECSMessage (da taMessage) ;
364 d a t a M e s s a g e S t r = OMECSMessageToString (da taMessage , o m e c s f a l s e) ;
365 # e n d i f
366
367 / / send p a c k e t c o n t a i n i n g Fuel l e v e l / Wind Speed Message
368 l e n = s t r l e n (d a t a M e s s a g e S t r) ;
369 s e n t = s e n d t o (mySocket , d a t a M e s s a g e S t r , l en , 0 , (LPSOCKADDR)&

s e r v e r I P A d d r e s s , s i z e o f (s t r u c t s o c k a d d r)) ;
370
371 / / f r e e memory
372 deleteOMECSObject (da t aMessage) ;
373 f r e e (d a t a M e s s a g e S t r) ;
374
375 d a t a C o u n t = 0 ;
376
377 } / / End Fuel L e v e l / Wind Speed message
378
379 / / check f o r r e c e i v e d OpenMECS messages once e v e r y 250ms , b u t t o c o n s e r v e

memory o n l y r e c e i v e
380 / / on c y c l e s where t h e f u e l l e v e l message i s n o t b e i n g formed
381
382 e l s e i f (t i c k s == (t i c k s P e r Q u a r t S e c o n d −5))
383 {
384 / / r e s e r v e some memory t o r e c e i v e i n t o
385 d a t a = ma l lo c (1 5 4 8) ;
386
387 / / t r y t o r e c e i v e from s o c k e t
388 r e c v F l a g = r e c v (mySocket , da t a , 1548 , 0) ;

79

389
390 sw i t ch (r e c v F l a g)
391 {
392 case 0 : break ; / / no data , do n o t h i n g
393 case −1: break ; / / Error r e c e v i n g from s o c k e t
394 d e f a u l t : / / s o m e t h i n g was r e c e i v e d , p r o c e s s t h e da ta
395 {
396 / / make s u r e a t e r m i n a t e d s t r i n g i s r e c e i v e d
397
398
399 / / t r y t o form an OpenMECS message from t h e

r e c e i v e d da ta
400 / / recvdMessage = ParseOMECSMessageText (da ta) ;
401 / / NOT WORKING, manua l l y l o o k f o r s y s t e m t i m e
402 p t r 1 = s t r s t r (da t a , ”\” da taType \” : 2 ”) ;
403 memcpy (t e s t , p t r 1 , 19) ;
404 / / i f p t r 1 i s n o t NULL , t h e n t h i s i s s y s t e m t i m e

message
405 i f (p t r 1)
406 {
407 / / l o o k f o r t i m e p o r t i o n , s t a r t a t da ta

c o n t e n t s
408 / / t h e t i m e p o r t i o n w i l l be l o c a t i o n

be tween t h i r d and f o u r t h q u o t e s
409 p t r 1 = s t r s t r (da t a , ”\” d a t a C o n t e n t s \” ”) ;
410 memcpy (t e s t , p t r 1 , 19) ; p t r 1 ++;
411 p t r 2 = s t r s t r (p t r 1 , ”\” ”) ; p t r 2 ++; p t r 1 =

s t r s t r (p t r 2 , ”\” ”) ;
412 memcpy (t e s t , p t r 1 , 19) ; p t r 1 ++;
413 p t r 2 = s t r s t r (p t r 1 , ”\” ”) ; p t r 2 ++; p t r 1 =

s t r s t r (p t r 2 , ”\” ”) ;
414 memcpy (t e s t , p t r 1 , 19) ; p t r 1 ++;
415 p t r 2 = s t r s t r (p t r 1 , ”\” ”) ; * p t r 2 = ’\0 ’ ;
416
417 / / a t t h i s p o i n t p t r 2 p o i n t s t o b e g i n i n g

o f t ime , p t r 1 t o end
418 / / s t o r e t i m e i n g l o b a l f o r l a t e r use .

t e r m i n a t e t h e s t r i n g a f t e r p t r 1
419 memcpy (t e s t , p t r 1 , 19) ;
420 s t r c p y (systemTime , p t r 1) ;
421 }
422
423 / / i f p o i n t e r i s n o t NULL v a l i d a t e t h e message
424 i f (recvdMessage != NULL)
425 {
426 / / t h e message i s v a l i d p r o c e s s t h e

message
427 / / i f (0) / / ValidateOMECSMessage (recvdMessage

))
428 / / {
429 ProcessRecvdMessage (recvdMessage) ;
430 / / }
431 }
432 e l s e
433 {

80

434 / / do s o m e t h i n g f o r debug
435 d a t a C o u n t += r e c v F l a g ;
436
437 }
438
439 / / f r e e t h e memory from t h e r e c e v e d message
440 deleteOMECSObject (recvdMessage) ;
441
442 } / / End d e f a u l t case
443 } / / End s w i t c h
444
445 / / f r e e up t h e memory
446 f r e e (d a t a) ;
447
448
449 } / / End r e c i e v e OpenMECS messages
450
451
452 }
453
454
455
456 }
457
458
459 void ProcessRecvdMessage (o m e c s o b j e c t * t h e O b j e c t)
460 {
461 i f (t h e O b j e c t != NULL)
462 {
463 d a t a C o u n t +=30;
464 }
465
466
467 }

B.3.2 File: main.c

The following file is the “main.c” file that is provided by Microchip® with the PIC32 “Eth-
ernet - TCPIP-BSD - HTTP Server Demo.” I have modifed main.c from the original
Microchip® provided content for the purposes of the OpenMECS End node application.
Section 4.1 describes the modifications necessary to tailor the file for the OpenMECS ap-
plication.

1 / * **
2 *
3 * Example a p p l i c a t i o n f o r t h e Microch ip BSD s t a c k HTTP S e r v e r
4 *
5 ***
6 * FileName : main . c
7 * Company : Microch ip Technology , I n c .
8 *

81

9 * S o f t w a r e L i c e n s e Agreement :
10 *
11 * The s o f t w a r e s u p p l i e d h e r e w i t h by Microch ip Techno logy I n c o r p o r a t e d
12 * (t h e C o m p a n y) f o r i t s dsPIC30F and P I C m i c r o M i c r o c o n t r o l l e r i s i n t e n d e d
13 * and s u p p l i e d t o you , t h e Company s cus tomer , f o r use s o l e l y and
14 * e x c l u s i v e l y on Microch ip ’ s dsPIC30F and PICmicro M i c r o c o n t r o l l e r p r o d u c t s .
15 * The s o f t w a r e i s owned by t h e Company and / or i t s s u p p l i e r , and i s
16 * p r o t e c t e d under a p p l i c a b l e c o p y r i g h t laws . A l l r i g h t s are r e s e r v e d .
17 * Any use i n v i o l a t i o n o f t h e f o r e g o i n g r e s t r i c t i o n s may s u b j e c t t h e
18 * u s e r t o c r i m i n a l s a n c t i o n s under a p p l i c a b l e laws , as w e l l as t o
19 * c i v i l l i a b i l i t y f o r t h e breach o f t h e t e r m s and c o n d i t i o n s o f t h i s
20 * l i c e n s e .
21 *
22 * THIS SOFTWARE IS PROVIDED IN AN A S I S CONDITION . NO WARRANTIES ,
23 * WHETHER EXPRESS , IMPLIED OR STATUTORY , INCLUDING , BUT NOT LIMITED
24 * TO , IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE . THE COMPANY SHALL NOT,
26 * IN ANY CIRCUMSTANCES , BE LIABLE FOR SPECIAL , INCIDENTAL OR
27 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER .
28 *
29 *
30 *** * /
31 # i n c l u d e <p l i b . h>
32 # i n c l u d e ” t c p i p b s d c o n f i g . h ”
33 # i n c l u d e <TCPIP−BSD\ t c p i p b s d . h>
34 # i n c l u d e ”OpenMECS\omecs . h ”
35 # i n c l u d e ”OpenMECS\ o m e c s c l i e n t . h ”
36 # i n c l u d e ” s y s t e m s e r v i c e s . h ”
37
38
39 # i f (((PIC32 FEATURE SET < 500) | | (PIC32 FEATURE SET > 799) | | ! d e f i n e d (ETH)

| | ! d e f i n e d (MAC EMBEDDED PIC32)))
40 # e r r o r ” Th i s demo i s s u p o s s e d t o run on PIC32MX5−7 f a m i l y wi th embedded E t h e r n e t

C o n t r o l l e r ! ”
41 # e n d i f
42
43 # i f ! d e f i n e d (ETH STARTER KIT)
44 # e r r o r ” Th i s demo i s supposed t o run on an E t h e r n e t S T a r t e r K i t boa rd . D e f in e t h e

ETH STARTER KIT symbol ! ”
45 # e n d i f
46
47 # i n c l u d e ” h a r d w a r e p r o f i l e . h ”
48 # i n c l u d e ” s y s t e m s e r v i c e s . h ”
49
50
51 / / n o t i f i c a t i o n f u n c t i o n
52 void TCPIPEventCB (eTCPIPEvent e v e n t) ;
53
54 void P r o c e s s T C P I P E r r o r (eTCPIPEvent e r r E v e n t) ;
55 void P r o c e s s L i n k E r r o r (void) ;
56
57 v o l a t i l e i n t newStackEvent =0 ;
58 v o l a t i l e i n t t o t S t a c k E v e n t s =0 ;
59
60 i n t s t a c k U s e P o l l i n g =0; / / i n s t e a d o f n o t i f i c a t i o n e v e n t s .

82

No good r ea so n .
61 / / a lways use n o t i f i c a t i o n

, i f a v a i l a b l e
62
63 i n t e t h E r r o r E v e n t C n t =0; / / number o f e r r o r s t h a t o c c u r r e d
64 i n t e t h E r r o r E v e n t =0; / / t h e e r r o r s t h a t o c c u r r e d
65 i n t e thRxOvf lCn t =0; / / RX o v e r f l o w c o u n t : t h e most i m p o r t a n t e r r o r ; shows

i f t h e PIC32 s y s t e m can keep up w i t h t h e incoming da ta f l o w
66
67 i n t ethLinkDownCnt =0; / / l i n k down c o u n t e r
68 i n t ethLinkWasUp =0; / / f l a g t o t e l l i f t h e l i n k was d e t e c t e d up (we migh t

s t a r t w i t h t h e l i n k down or n e g o t i a t i o n n o t per fo rmed)
69
70 i n t s t a c k H t t p T e s t =0 ; / / u se t h e h t t p s e r v e r : a lways f o r t h i s demo
71 i n t s tackUseDhcp =1; / / u se t h e DHCP c l i e n t t o g e t a dynamic IP

a d d r e s s
72
73 / / OMECS da ta
74 BOOL i n i t i a l i z e d = FALSE ;
75
76 IP ADDR c u r r i p ;
77 IP ADDR s e r v e r I P ;
78 DWORD myIP ;
79 i n t c o u n t ;
80 i n t l a s t T i c k ;
81
82 /
83 i n t main ()
84 {
85 unsigned i n t s y s c l k , p b c l k ;
86
87 s y s c l k = GetSys temClock () ;
88 p b c l k =SYSTEMConfigWaitStatesAndPB (s y s c l k) ;
89
90 / / Turn on t h e i n t e r r u p t s
91 I N T E n a b l e S y s t e m M u l t i V e c t o r e d I n t () ;
92
93 / / Turn ON t h e s y s t e m c l o c k
94 S y s t e m T i c k I n i t (s y s c l k , TICKS PER SECOND) ;
95
96 / / I n i t i a l i z e t h e TCP / IP
97 TCPIPSe tDefau l tAddr (DEFAULT IP ADDR , DEFAULT IP MASK , DEFAULT IP GATEWAY ,

DEFAULT MAC ADDR) ;
98
99 i f (! T C P I P I n i t (s y s c l k))

100 {
101 re turn 0 ;
102 }
103
104 i f (s tackUseDhcp)
105 {
106 DHCPInit () ;
107 }
108
109 c u r r i p . Val = 0 ;

83

110
111 / / OpenMECS
112 / / removed i n i t i a l i z a t i o n o f HTTP s e r v e r , i t i s n o t needed by OpenMECS a p p l i c a t i o n
113
114 i f (! s t a c k U s e P o l l i n g)
115 {
116 T C P I P E v e n t S e t N o t i f y H a n d l e r (TCPIPEventCB) ;
117 T C P I P E v e n t S e t N o t i f y E v e n t s (TCPIP EV STACK PROCESSED |TCPIP EV ERRORS) ;
118 }
119
120 / / OpenMECS
121 / / removed a l l HTTP s e r v e r code from w h i l e loop
122 whi le (1)
123 {
124 i n t l i n k U p d a t e d =0;
125 i n t l i nkOk =0;
126
127 i f (s t a c k U s e P o l l i n g ==0 && newStackEvent)
128 {
129 eTCPIPEvent a c t i v e E v e n t ;
130
131 newStackEvent =0 ;
132
133 a c t i v e E v e n t =TCPIPEventGetPending () ;
134
135 i f (a c t i v e E v e n t&TCPIP EV STACK PROCESSED)
136 {
137 l inkOk = TCPIPEven tProcess (a c t i v e E v e n t) ;
138 l i n k U p d a t e d =1;
139 }
140
141 i f (a c t i v e E v e n t&TCPIP EV ERRORS)
142 { / / some e r r o r has o c c u r r e d
143 P r o c e s s T C P I P E r r o r (a c t i v e E v e n t) ;
144 }
145
146 }
147 e l s e i f (s t a c k U s e P o l l i n g)
148 { / / p o l l i n g
149 l inkOk = TCPIPEven tProcess (0) ;
150 l i n k U p d a t e d =1;
151 }
152
153 i f (l i n k U p d a t e d)
154 {
155 i f (l inkOk)
156 {
157 ethLinkWasUp =1;
158 }
159 e l s e i f (ethLinkWasUp)
160 {
161 P r o c e s s L i n k E r r o r () ; / / l i n k i s a c t u a l l y down o n l y i f i t was up b e f o r e
162 }
163 }
164

84

165 / / OpenMECS
166 / / I n i t i a l i z e Open MECS once an IP a d d r e s s i s r e c e i v e d , read s e r v e r IP

a d d r e s s and ”my” IP a d d r e s s
167 s e r v e r I P = getDHCPServerID () ;
168 myIP = TCPIPGetIPAddr () ;
169
170 / / OpenMECS
171 / / Check t o s e e i f t h e DHCP p r o c e s s i s f i n i s h e d . Compare s e r v e r IP a d d r e s s

a g a i n t d e f a u l t v a l u e
172 i f ((s e r v e r I P . v [0] != NULL) && (s e r v e r I P . v [0] != ’ . ’) && (i n i t i a l i z e d ==

FALSE) && (c o u n t > 50000))
173 {
174 / / as soon as we have an IP a d d r e s s and t h e S e r v e r IP addres s ,

i n i t i a l i z e t h e OpenMECS p r o t o c o l code
175 OMECS Cl ien t In i t (s e r v e r I P , myIP) ;
176 i n i t i a l i z e d = TRUE;
177 }
178 / / OpenMECS
179 / / A r b i t r a r i l y w a i t u n t i l a c o u n t o f 5000 i s reached t o e n s u r e t h e DHCP

p r o c e s s can f i n i s h
180 e l s e i f ((s e r v e r I P . v [0] != NULL) && (s e r v e r I P . v [0] != ’ . ’) && (i n i t i a l i z e d

== FALSE))
181 {
182 c o u n t ++;
183 }
184
185 / / OpenMECS
186 / / PROCESS OpenMECS messages , bo th t r a n s m i t and r e c e i v e
187 i f (i n i t i a l i z e d)
188 {
189 / / OpenMECS
190 / / |
191 / / V The a c t u a l OpenMECS ”End node” a p p l i c a t i o n
192 OMECS Client () ;
193 }
194
195 i f (s tackUseDhcp)
196 {
197 IP ADDR i p ;
198 DHCPTask () ;
199
200 i f (c u r r i p . Val != (i p . Val = TCPIPGetIPAddr ()))
201 { / / board has changed t h e a d d r e s s
202 c u r r i p . Val = i p . Val ;
203 }
204 }
205 }
206
207 re turn 0 ;
208 }
209
210 / / TCPIP e v e n t n o t i f i c a t i o n h a n d l e r
211 void TCPIPEventCB (eTCPIPEvent e v e n t)
212 {
213 newStackEvent ++;

85

214 t o t S t a c k E v e n t s ++;
215
216 }
217
218 void P r o c e s s T C P I P E r r o r (eTCPIPEvent e r r E v e n t)
219 {
220 / / some e r r o r has o c c u r r e d . . .
221 / / t a k e a s n a p s h o t o f t h e ETh C o n t r o l l e r s t a t u s
222
223 sEthDcptQuery rxQuery , txQuery ;
224
225 e thRxOvf lCn t += E t h S t a t R x O v f l C n t () ;
226
227 E t h D e s c r i p t o r s Q u e r y (ETH DCPT TYPE RX , &rxQuery) ;
228 E t h D e s c r i p t o r s Q u e r y (ETH DCPT TYPE TX , &txQuery) ;
229
230 i f (e r r E v e n t&TCPIP EV ERRORS)
231 {
232 e t h E r r o r E v e n t |= e r r E v e n t ;
233 e t h E r r o r E v e n t C n t ++;
234 TCPIPEventAck (e r r E v e n t) ;
235 }
236 / / j u s t i g n o r e f o r now
237 }
238
239
240 void P r o c e s s L i n k E r r o r (void)
241 {
242 / / l i n k i s down . . .
243 ethLinkDownCnt ++;
244 re turn ; / / j u s t i g n o r e i t f o r now
245 }

86

